Journal of Geodesy

, Volume 80, Issue 8–11, pp 591–607 | Cite as

Plate kinematics of Nubia–Somalia using a combined DORIS and GPS solution

  • J. -M. NocquetEmail author
  • P. Willis
  • S. Garcia
Original Article


We have used up to 12 years of data to assess DORIS performance for geodynamics applications. We first examine the noise characteristics of the DORIS time-series of weekly station coordinates to derive realistic estimates of velocity uncertainties. We find that a combination of white and flicker noise best explains the DORIS time-series noise characteristics. Second, weekly solutions produced by the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL) DORIS Analysis Centre are combined to derive a global velocity field. This solution is combined with two independent GPS solutions, including 11 sites on Nubia and 5 on the Somalia plate. The combination indicates that DORIS horizontal velocities have an average accuracy of 3 mm/year, with best-determined sites having velocity accuracy better than 1 mm/year (one-sigma levels). Using our combined velocity field, we derive an updated plate kinematics model with a focus on the Nubia–Somalia area. Including DORIS data improves the precision of the angular velocity vector for Nubia by 15%. Our proposed model provides robust bounds on the maximum opening rates along the East African Rift (4.7–6.7 mm/year). It indicates opening rates 15 and 7% slower than values predicted by NUVEL-1A for the southern Atlantic Ocean and Indian Ocean, respectively. These differences are likely to arise from the fact that NUVEL-1A considered Africa as a single non-deforming plate, while here we use a more refined approach.


Africa Nubia Somalia Plate motion DORIS GPS Terrestrial reference frame Plate tectonics NUVEL-1A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000, a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10):2214. DOI 10.1029/2001JB000561CrossRefGoogle Scholar
  2. Altamimi Z, Colillieux X, Boucher C (2006) DORIS contribution to ITRF2005. J Geod (this issue)Google Scholar
  3. Argus DF, Heflin MB (1995) Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophys Res Lett 22(15):1973–1976. DOI 10.1029/95GL02006CrossRefGoogle Scholar
  4. Babbucci D, Tamburelli C, Vitil M, Mantovani E, Albarello D, D’Onza Cenni1 F, Mugnaioli E (2004) Relative motion of the Adriatic with respect to the confining plates: seismological and geodetic constraints. Geophys J Int 159(2):765–775. DOI 10.1111/j.1365-246X.2004.02403CrossRefGoogle Scholar
  5. Bendick R, McClusky S, Bilham R, Asfaw L, Klemperer S (2006) Distributed Nubia–Somalia relative motion and dike intrusion in the Main Ethiopian Rift. Geophys J Int 165(1):303–311. DOI 10.1111/j.1365-246X.2006.02904.xCrossRefGoogle Scholar
  6. Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS), an interdisciplinary service in support of Earth Sciences. In: Dow J, Beutler G (eds) Adv Space Res 23(4):631–653CrossRefGoogle Scholar
  7. Bilham R, Bendick R, Larson K, Mohr P, Braun J, Tesfaye S, Asfaw L (1999) Secular and tidal strain across the main Ethiopian rift. Geophys Res Lett 26(18):2789–2792. DOI 0.1029/1998GL005315CrossRefGoogle Scholar
  8. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. DOI 10.1029/2001GC000252CrossRefGoogle Scholar
  9. Calais E, DeMets C, Nocquet JM (2003) Evidence for a post-3.16 Ma change in Nubia–Eurasia–North America plate motions. Earth Planet Sci Lett 216(1–2):81–92. DOI 10.1016/S0012-821X(03)00482-5CrossRefGoogle Scholar
  10. Calais E, Mattioli G, DeMets C, Nocquet J-M, Stein S, Newman A, Rydelek P (2005) Tectonic strain in plate interiors? (Reply). Nature 438(7070):E9–E10. DOI 10.1038/nature04429CrossRefGoogle Scholar
  11. Calais E, Ebinger C, Hartnady C, Nocquet JM (2006) Kinematics of the East African rift from GPS and earthquake slip vector data. Geological Society of London, Special volume on East African riftGoogle Scholar
  12. Cande SC, Kent DV (1992) A new geomagnetic polarity time scale for the Late Cretaceous Cenozoic. J Geophys Res 97(B10):13917–13951. DOI 10.1029/92JB01202Google Scholar
  13. Christodoulidis DC, Smith DE, Kolenkiewicz R, Klosko SM, Torrence MH, Dunn PJ (1985) Observing tectonic plate motion and deformation from Satellite Laser Ranging. J Geophys Res 90(B11):9249–9263Google Scholar
  14. Chu D, Gordon RG (1999) Evidence for motion between Nubia and Somalia along the Southwest Indian ridge. Nature 398(6722):64–67. DOI 10.1038/18014CrossRefGoogle Scholar
  15. Cretaux JF, Soudarin L, Cazenave A, Bouille F (1998) Present-day tectonic plate motions and crustal deformations from the DORIS space system. J Geophys Res 103(B12):30167–30181. DOI 10.1029/98JB02239CrossRefGoogle Scholar
  16. DeMets C (1995) A reappraisal of sea floor spreading lineations in the Gulf of California: implications for the transfer of Baja California to the pacific plate and estimates of Pacific–North America motion. Geophys Res Lett 22(24):3545–3548. DOI 10.1029/95GL03323CrossRefGoogle Scholar
  17. DeMets C, Gordon RG, Argus DF, Stein S (1990) Current plate motions. Geophys J Int 101(2):425–478Google Scholar
  18. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time-scale on estimates of current plate motions. Geophys Res Lett 21(20):2191–2194. DOI 10.1029/94GL02118CrossRefGoogle Scholar
  19. DeMets C, Gordon RG, Royer J-Y (2005) Motion between the Indian, Capricorn and Somalian plates since 20 Ma: implications for the timing and magnitude of distributed lithospheric deformation in the equatorial Indian ocean. Geophys J Int 161(2):445–468. DOI 10.1111/j.1365–246X.2005.0298.xCrossRefGoogle Scholar
  20. Eanes RJ, Schuler A (1999) An improved global ocean tide model from TOPEX/Poseidon altimetry: CSR4.O. In: EGS, 24th general assembly, The Hague (NL)Google Scholar
  21. Ebinger C (1989) Tectonic development of the western branch of the East African rift system. Geol Soc Am Bull 101:885–903CrossRefGoogle Scholar
  22. Fagard H (2006) 20 years of evolution of the DORIS network, from its initial deployment. J Geod (this issue)Google Scholar
  23. Ferland R, Kouba J, Hutchison D (2000) Analysis methodology and recent results of the IGS network combination. Earth Planet Space 52(11):953–957Google Scholar
  24. Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Combrinck L, Miranda JM, Spakman W (2004) Angular velocities of Nubia and Somalia from continuous GPS data: implications on present-day relative kinematics. Earth Planet Sci Lett 222(1):197–208. DOI 10.1016/j.epsl.2004.02.008CrossRefGoogle Scholar
  25. Gordon RG (1995) Plate motions, crustal and lithospheric mobility, and paleomagnetism: Prospective viewpoint. J. Geophys Res 100(B12):24367. DOI 10.1029/95JB01912CrossRefGoogle Scholar
  26. Heflin M, Bertiger W, Blewitt G, Freedman A, Hurst K, Lichten S, Lindqwister U, Vigue Y, Webb F, Yunck T, Zumberge J (1992) Global geodesy using GPS without fiducial sites. Geophys Res Lett 19(2):131–134. DOI 10.1029/91GL02983Google Scholar
  27. Herring TA, Shapiro II, Clark TA, Ryan JW, Schupler BR, Knight CA, Lundqvist G, Shaffer DB, Vandenberg NR, Corey BE, Hinteregger HF, Roggers AEE, Webber JC, Whitney AR, Elgered G, Ronnang BO, Davis JL (1986) Geodesy by radio interferometry: evidence for contemporary plate motion. J Geophys Res 91(B8): 8341–8347Google Scholar
  28. Horner-Johnson BC, Gordon RG, Cowles SM, Argus DF (2005) The angular velocity of Nubia relative to Somalia and the of the Nubia–Somalia–Antarctica triple junction. Geophys J Int 162(1):221–238. DOI 10.1111/j.1365-246X.2005.02608CrossRefGoogle Scholar
  29. Jestin FP, Huchon JM, Gaulier (1994) The Somali plate and the East African Rift system: present-day kinematics. Geophys J Int 116:637–654Google Scholar
  30. King RW, Bock Y (2005) Documentation for the GAMIT GPS software analysis, release 10.20. MIT, CambridgeGoogle Scholar
  31. Kreemer C, Holt WE, Haines AJ (2003) An integrated global model of present-day plate motions and plate boundary deformation. Geophys J Int 154(1):8–34. DOI 10.1046/j.1365-246X.2003.01917.xCrossRefGoogle Scholar
  32. Larson KM, Freymueller JT, Philipsen E (1997) Global plate velocities from the global positioning system. J Geophys Res 102(B5):9961–9981. DOI 10.1029/97JB00514CrossRefGoogle Scholar
  33. Lemaux JII, Gordon RG, Royer JY (2002) Location of the Nubia–Somalia boundary along the Southwest Indian ridge. Geology 30(4):339–342CrossRefGoogle Scholar
  34. Le Pichon X (1968) Sea floor spreading and continental drift. J Geophys Res 73:3661–3697CrossRefGoogle Scholar
  35. Mao AL, Harrison CGA, Dixon TH (1999) Noise in GPS coordinate time series. J Geophys Res 104(B2):2797–2816. DOI 10.1029/1998JB900033CrossRefGoogle Scholar
  36. McCarthy DD, Petit G (2004) IERS Conventions 2003, IERS Tech Note 32, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 127 pp.Google Scholar
  37. McClusky S, Reilinger R, Mahmoud S, Ben Sari D, Tealeb A (2003) GPS constraints on Africa (Nubia) and Arabia plate motions. Geophys J Int155(1):126–138. DOI 10.1046/j.1365-246X.2003.02023CrossRefGoogle Scholar
  38. McKenzie DP, Parker RL (1967) The North Pacific: an example of tectonics on a sphere. Nature 216:1276–1280CrossRefGoogle Scholar
  39. Moore AW, Neilan RE (2005) The International GPS Service tracking network, enabling diverse studies and projects through international cooperation. J Geodyn 40(4–5):461–469. DOI 10.1016/j.jog.2005.10.009CrossRefGoogle Scholar
  40. Morel L, Willis P (2002) Parameter sensitivity of TOPEX orbit and derived mean sea level to DORIS station coordinates. Adv Space Res 30(2):255–263. DOI 10.1016/S0273-1177(02)00293-4CrossRefGoogle Scholar
  41. Morgan WJ (1968) Rises, trenches, great faults, and crustal blocks. J Geophys Res 73:1959–1982Google Scholar
  42. Nerem RS, Mitchum GT (2002) Estimates of vertical crustal motion derived from differences of TOPEX/Poseidon and tide gauges sea level measurements. Geophys Res Lett 29(19):1934. DOI 10.1029/2002GL015037CrossRefGoogle Scholar
  43. Nocquet J-M, Calais E (2004) Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. In: , Calais E (eds) Pure and Appl Geophys 161(3):661–668. DOI 10.1007/s00024-003-2468-zCrossRefGoogle Scholar
  44. Nocquet J-M, Calais E, Altamimi Z, Sillard P, Boucher C (2001) Intraplate deformation in western Europe deduced from an analysis of the ITRF97 velocity field. J Geophys Res 106(B6):11239. DOI 10.1029/2000JB900410CrossRefGoogle Scholar
  45. Nocquet J-M, Calais E, Parsons B (2005) Geodetic constraints on glacial isostatic adjustment in Europe. Geophys Res Lett 32(6):L06308. DOI 10.1029/2004GL022174CrossRefGoogle Scholar
  46. Prawirodirdjo L, Bock Y (2004) Instantaneous global plate motion from 12 years of continuous GPS observations. J Geophys Res 109(B8):B08405. DOI 10.1029/2003JB002944CrossRefGoogle Scholar
  47. Sella GF, Dixon TH, Mao A (2002) REVEL: a model for recent plate velocities from space geodesy. J Geophys Res 107(B4):2081. DOI 10.1029/2000JB000033CrossRefGoogle Scholar
  48. Sillard P, Boucher C (2001) A review of algebraic constraints in Terrestrial Reference Frame datum definition. J Geod 75(2–3):63–73. DOI 10.1007/s001900100166CrossRefGoogle Scholar
  49. Soudarin L (2005) Discussions DORIS station discontinuities on IDS Analysis Forum. Scholar
  50. Soudarin L, Cretaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210. DOI 10.1029/1999GL900215CrossRefGoogle Scholar
  51. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505. DOI 10.1126/science.1099192CrossRefGoogle Scholar
  52. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341. DOI 10.1016/j.asr.2005.03.102CrossRefGoogle Scholar
  53. Vigny C, Huchon P, Ruegg J-C, Khanbari K, Asfaw LM (2006) Confirmation of Arabia plate slow motion by new GPS data in Yemen. J Geophys Res 111(B02402). DOI 10.1029/2004JB003229Google Scholar
  54. Webb F, Zumberge J (eds) (1995) An introduction to GIPSY/OASIS II, Rep. JPLM D-11088. Jet Propulsion Lab, PasadenaGoogle Scholar
  55. Williams SDP (2003) The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J Geod 76(9–10):483–494. DOI 10.1007/s00190-002-0283-4CrossRefGoogle Scholar
  56. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod (this issue)Google Scholar
  57. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prawirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109(B3):B03412. DOI 10.1029/2003JB002741CrossRefGoogle Scholar
  58. Willis P, Heflin MB (2004) External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results. Geophys Res Lett 31(13):L13616. DOI 10.1029/2004GL020038CrossRefGoogle Scholar
  59. Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 precise orbit determination. J Geod 79(6–7):370–378. DOI 10.1007/s00190-005-0475-9CrossRefGoogle Scholar
  60. Willis P, Haines B, Bar-Sever Y, Bertiger W, Muellerschoen R, Kuang D, Desai S (2003) TOPEX/Jason combined GPS/DORIS orbit determination in the tandem phase. Adv Space Res 31(8):1941–1946. DOI 10.1016/S0273-1177(03)00156-XCrossRefGoogle Scholar
  61. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. CR Geosci 336(9):839–846. DOI 10.1016/j.crte.2004/01.004CrossRefGoogle Scholar
  62. Willis P, Boucher C, Fagard H, Altamimi Z (2005a) Geodetic applications of the DORIS system at the French Institut Geographique National. CR Geosci 337(7):653–662. DOI 10.1016/j.crte.2005.03.002CrossRefGoogle Scholar
  63. Willis P, Soudarin L, Fagard H, Ries J, Noomen R (2005b) IDS recommendations for ITRF2004, version 1.0, 15 November 2005. IDS Tech ReportGoogle Scholar
  64. Willis P, Jayles C, Bar-Sever YE (2006a) DORIS from orbit determination for altimeter missions to geodesy. CR Geosci. DOI 10.1016/j.crte.2005.11.013Google Scholar
  65. Willis P, Berthias JP, Bar-Sever YE (2006b) Systematic errors in the Z-geocenter derived using satellite tracking data, a case study from SPOT-4 DORIS data in 1998. J Geod 79(10–11):567–572. DOI 10.1007/s00190-005-0013-9CrossRefGoogle Scholar
  66. Wilson JT (1965) A new class of faults and their bearing on continental drift. Nature 207:343–347CrossRefGoogle Scholar
  67. Zhang J, Bock Y, Jonhson H, Fang P, Williams S, Genrich J, , Behr J (1997) Southern California permanent GPS geodetic array, error analysis of daily position estimates and site velocities. J Geophys Res 102(B8):18035–18055. DOI 10.1029/97JB01380CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.UMR6526 GéosciencesAzurFrance
  2. 2.Institut Geographique National, Direction TechniqueSaint-MandeFrance
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations