Journal of Geodesy

, Volume 80, Issue 8–11, pp 657–664 | Cite as

First results of DORIS data analysis at Geodetic Observatory Pecný

  • Petr Štěpánek
  • Urs Hugentobler
  • Karine Le Bail
Original Article


In a cooperation between the Astronomical Institute, University of Bern (AIUB), the Geodetic Observatory Pecný (GOPE), and the Institut Géographique National (IGN), DORIS data analysis capabilities were implemented into a development version of the Bernese GPS software. The DORIS Doppler observables are reformulated such that they are similar to global navigation satellite system (GNSS) carrier-phase observations, allowing the use of the same observation models and algorithms as for GNSS carrier-phase data analysis with only minor software modifications. As such, the same algorithms may be used to process DORIS carrier-phase observations. First results from the analysis of 3 weeks of DORIS data (September 2004, five DORIS-equipped satellites) at GOPE are promising and are presented here. They include the comparison of station coordinates with coordinate estimates derived by the Laboratoire d’Etudes en Géophysique et Océanographie Spatiale/Collecte Localisation Satellites analysis centre (LCA) and the Institut Géographique National/Jet Propulsion Laboratory (IGN/JPL), and the comparison of Earth orientation parameters (EOPs) with the International Earth Rotation and Reference Frames Service (IERS) C04 model. The modified Bernese results are of a slightly lower, but comparable, quality than corresponding solutions routinely computed within the IDS (International DORIS Service). The weekly coordinate repeatability RMS is of the order of 2–3 cm for each 3D station coordinate. Comparison with corresponding estimates of station coordinates from current IDS analysis centers demonstrates similar precision. Daily pole component estimates show a mean difference from IERS-C04 of 0.6  mas in X p and  − 0.5  mas in Y p and a RMS of 0.8  mas in X p and 0.9  mas in Y p (mean removed). An automatic analysis procedure is under development at GOPE, and routine DORIS data processing will be implemented in the near future.


DORIS data analysis Bernese GPS software geodetic positioning Earth orientation parameters (EOPs) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10):2214, DOI:10.1029/2001JB000561CrossRefGoogle Scholar
  2. Berthias JP (2002) CNES processing strategy at the service D’Orbitographie DORIS (SOD), IDS workshop 2002 presentation, Biarritz, June, Scholar
  3. Berthias JP (2003) Trends in DORIS data formats. IDS analysis centers workshop, Marne la Valée Feb, Scholar
  4. Beutler G, Brockmann E, Gurtner W, Hugentobler U, Mervart L, Rothacher M (1994) Extended orbit modeling techniques at the CODE processing center of the International GPS Service for geodynamics (IGS): theory and initial results. manuscr Geodaet. 19:367–386Google Scholar
  5. Fagard H(2006) 20 years of evolution for the DORIS permanent network, from its initial deployment to its renovation. J Geodesy, Same issue (submitted)Google Scholar
  6. Gambis D (2004) Monitoring earth orientation using space-geodetic techniques, state-of-the-art and prospective. J Geodesy 78(4–5):295–303, DOI: 10.1007/s00190-004-0394-1CrossRefGoogle Scholar
  7. Hugentobler U, Dach R, Meindl M, Fridez P (2005) Bernese GPS Software, Version 5.0. Astronomical Institute. University of Bern, BernGoogle Scholar
  8. Hugentobler U, Meindl M, Beutler G, Bock H, Dach R, Jäggi A, Urschl, Mervart L, Rothacher M, Schaer S, Brockmann E, Ineichen D, Wiget A, Wild U, Weber G, Habrich H, Boucher C (2006) CODE IGS Analysis Center Technical Report 2003/04, Technical Reports 2003/04, K. Gowey (ed), IGS Central Bureau, Jet Propulsion Laboratory, Pasadena (in press)Google Scholar
  9. Lemoine FG, Kenyon SC, Factor RG, Trimmer RG, Pavslis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA/GSFC and the National Imagery and Mapping Agency (NIMA) geopotential models, EGM96. NASA report TP-1998–206861, NASA, Greenbelt, 575 pGoogle Scholar
  10. Ma XC, Shum CK, Eanes RJ, Tapley BD (1994) Determination of ocean tides from the first year of TOPEX/Poseidon altimeter measurements, J Geophys Res, 99(C12):24,809–24,820, DOI: 10.1029/94JC02140Google Scholar
  11. McCarthy DD (1996) IERS conventions 1996, IERS technical note 21, Observatoire de ParisGoogle Scholar
  12. McCarthy DD, Petit G (2004) IERS conventions 2003, IERS technical note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  13. Ménard Y, Fu LL, Escudier P, Parisot F, Perbos J, Vincent P, Desai S, Haines B, Kunstmann G (2003) The Jason mission. Mare Geod 26(3–4):131–46, DOI:10.1080/01490410490889049Google Scholar
  14. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  15. Nouël F, Berthias JP, Deleuze M, Guitart A, Laudet P, Piuzzi A, Pradines D, Valorge C, Dejoie C, Susini MF, Taburiau D (1994) Precise Centre National d’Etudes Spatiales orbits for TOPEX/Poseidon, Is reaching 2-cm still a challenge?. J Geophys Res 99(C12):24405–24419CrossRefGoogle Scholar
  16. Perosanz F, Marty JC, Balmino G (1997) Dynamic orbit determination and gravity field model improvement from GPS, DORIS and laser measurements on TOPEX/Poseidon satellite. J Geodesy 71(3):160–170, DOI:10.1007/s001900050084CrossRefGoogle Scholar
  17. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: The use of artificial satellites in geodesy (Geophysics Monogr. Ser.), American Geophysical Union, Washington, pp 247–251Google Scholar
  18. Šnajdrová K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geodesy 79 (10–11):613–623, DOI: 10.1007/s00190-005-0010-zCrossRefGoogle Scholar
  19. Soudarin L, Cretaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210, DOI: 10.1029/1999GL900215CrossRefGoogle Scholar
  20. Soudarin L, Cretaux JF (2004) Recent analysis at the LEGOS/CLS analysis center. IDS plenary meeting, PLACE, MONTH, Scholar
  21. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The international DORIS service (IDS). Adv Space Res 36(3):333–341CrossRefGoogle Scholar
  22. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic anomaly. CR Geosci 336(9):839–846, DOI: 10.1016/j.crte.2004.01.04CrossRefGoogle Scholar
  23. Willis P, Boucher C, Fagard H, Altamimi Z (2005) Applications of the DORIS system at the French Institut Geographique National. CR Geosci 337(7):653–662, DOI:10.1016/j.crte.2005.03.002CrossRefGoogle Scholar
  24. Willis P, Lemoine FG, Soudarin L (2006) Looking for systematic errors in scale from terrestrial reference frames derived from DORIS data.In: Proceedings of the IAG general assembly, Cairns(in press)Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Petr Štěpánek
    • 1
  • Urs Hugentobler
    • 2
  • Karine Le Bail
    • 3
    • 4
  1. 1.Geodetic Observatory PecnýResearch Institute of Geodesy, Topography and CartographyPrague-EastCzech Republic
  2. 2.Astronomical InstituteUniversity of BernBernSwitzerland
  3. 3.Laboratoire de Recherche an Géodésie (LAREG)Institut Géographique NationalMarne La Vallée Cedex 2France
  4. 4.Observatoire de la Côte d’AzurGEMININice Cedex 4France

Personalised recommendations