Journal of Geodesy

, Volume 80, Issue 8–11, pp 473–485 | Cite as

Ionospheric applications of the scintillation and tomography receiver in space (CITRIS) mission when used with the DORIS radio beacon network

  • Paul A. BernhardtEmail author
  • Carl L. Siefring
  • Ivan J. Galysh
  • Thomas F. Rodilosso
  • Douglas E. Koch
  • Thomas L. MacDonald
  • Matthew R. Wilkens
  • G. Paul Landis
Original Article


The scintillation and tomography receiver in space (CITRIS) instrument will orbit the Earth near 560 km altitude to detect signals from the ground-based array of more than 50 DORIS UHF/S-band radio beacons established at sites around the world by the French Centre National d‘Etudes Spatiales (CNES) and the Institut Géographique National (IGN). The CITRIS receiver is on the US Air Force Space Test Program satellite STPSAT1, which is scheduled for launch in November 2006. CITRIS will record ionospheric total electron content (TEC) and radio scintillations with a unique ground-to-space geometry. The new instrument has been developed to study the ionosphere using data obtained with the UHF and S-band radio transmissions from the DORIS beacons because ionospheric radio scintillations can seriously degrade the performance of many space-geodetic systems, including the DORIS precise satellite orbitography system and GNSS (Global Navigation Satellite Systems). The ionospheric data will be based on radio signals sampled at a rate of 200 Hz by the CITRIS receiver. Numerical models have been used to predict that the DORIS signals measured by CITRIS may have 30 dB fluctuations in amplitude and 30 rad in phase as the satellite flies over kilometer-scale ionospheric structures. The data from the space-based CITRIS receiver will help update and validate theories on the generation and effect of ionospheric irregularities known to influence radio systems. By using simultaneous beacon transmissions from DORIS on the ground and from low-Earth-orbit beacons in space, the concept of reciprocity in a non-bilateral propagation medium like the ionosphere will be tested. Computer simulations are used to predict the magnitude of amplitude and phase scintillations that are expected to be recorded with the CITRIS instrument.


DORIS Ionospheric scintillation Total electron content Radio beacons Ionospheric characterization Tomography 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aquino M, Moore T, Dodson A, Waugh S, Souter J, Rodrigues FS (2005) Implications of ionospheric scintillation for GNSS users in northern Europe. J Navig 58(2):241–256CrossRefGoogle Scholar
  2. Austen JR, Franke SJ, Liu CH (1988) Ionospheric imaging using computerized tomography. Radio Sci 23(3):299–307Google Scholar
  3. Bernhardt PA, Siefring CL (2006) new satellite based systems for tomography and scintillation region imaging. Radio Sci (in press)Google Scholar
  4. Bernhardt PA, Huba JD, Fulford JA, Forsyth PA, Anderson DN, Zalesak ST (1993) Analysis of rocket beacon transmissions to reconstruct ionospheric densities. Radio Sci 28:613–627Google Scholar
  5. Bernhardt PA, McCoy RP, Dymond KF, Picone JM, Meier RR, Kamalabadi F, Cotton DM, Chakrabarti S, Cook TA, Vickers JS, Stephan AW, Kersely L, Pryse SE, Walker IK, Mitchell CN, Straus PR, Na H, Biswas C, Bust GS, Kronschnabl GR, Raymund TD (1998) Two-dimensional mapping of the plasma density in the upper atmosphere with computerized ionospheric tomography (CIT). Phys Plasmas 5:2010–2021CrossRefGoogle Scholar
  6. Bernhardt PA, Selcher CA, Basu S, Bust G, Reising SC (2000) Atmospheric studies with the tri-band beacon instrument on the COSMIC constellation. Terr Atmos Ocean Sci 11(1):291–312Google Scholar
  7. Bernhardt PA, Selcher CA, Siefring CL, Wilkens M, Compton C, M, Fukao S, Ono T, Wakabayashi M, Mori H (2005) Radio tomographic imaging of sporadic E-layers during SEEK2. Ann Geophys 23(7):2357–2368Google Scholar
  8. Bohill SA (1958) The Faraday-rotation rate of a satellite radio signal. J Atmos Terr Phys 13:175–176CrossRefGoogle Scholar
  9. Bust GS, Garner TW, Gaussiran TL (2004) Ionospheric data assimilation three-dimensional (IDA3D): global, multisensor, electron density specification algorithm. J Geophys Res 109(A11):Art. No. A11312. DOI 10.1029/2003JA010234Google Scholar
  10. Candelier V, Canzian P, Lamboley J, Brunet M, Santarelli G (2003) Space qualified 5 MHz ultra stable oscillators. In: Proceedings of the 2003 IEEE international frequency control symposium & PDA exhibition jointly with the 17th European frequency and time forum,Google Scholar
  11. Caton RG, McNeil WJ, Groves KM, Basu S (2004) GPS proxy model for real-time UHF satellite communications scintillation maps from the Scintillation Network Decision Aid (SCINDA). Radio Sci 39(1): Art. No. RS1S22Google Scholar
  12. Davies K (1990) Ionospheric Radio. IEE Peter Peregrinus Ltd, LondonGoogle Scholar
  13. de La Beaujardière O, Jeong L, Basu B, Basu Sa, Beach T, Bernhardt PA, Burke W, Groves K, Heelis R, Holzworth R, Huang C, Hunton D, Kelley M, Pfaff R, Retterer J, Rich R, Starks M, Straus P, Valladares C (2004) C/NOFS: a mission to forecast scintillations. J Atmos Solar Terr Phys 66:1573–1591CrossRefGoogle Scholar
  14. Fagard H (2006) 20 years of evolution for the DORIS network: from its initial deployment to its renovation. J Geod (this issue)Google Scholar
  15. Fleury J, Roucher F, Lassudrie-Duchesne P (1991) Global TEC measurements capabilities of the DORIS system. Adv Space Res 11(10):1051–1054CrossRefGoogle Scholar
  16. Fremouw EJ, Leadabrand RL, Livingston RC, Cousins MD, Rino CL, Fair BC, Long RA (1978) Early results from the DNA wideband satellite experiment – complex signal scintillation. Radio Sci 13 (1):167–187Google Scholar
  17. Garcia-Fernandez M, Saito A, Juan JM, Tsuda T (2005) Three-dimensional estimation of electron density over Japan using the GPS network combined with SAC-C data and ionosonde measurements. J Geophys Res 110(A11): Art. No. A11304 DOI 10.1029/2005JA011037Google Scholar
  18. Garriott OK (1960) The determination of ionospheric electron content and distributions from satellite observations, Part 1, Theory of the analysis. J Geophys Res 65:1139–1150Google Scholar
  19. Goodman JW (1968) Introduction to Fourier optics. McGraw-Hill, New YorkGoogle Scholar
  20. Groves KM, Basu S, Weber EJ, Smitham M, Kuenzler H, Valladares CE, Sheehan R, MacKenzie E, Secan JA, Ning P, McNeill WJ, Moonan DW, Kendra MJ (1997) Equatorial scintillation and systems support. Radio Sci 32(5):2047–2064CrossRefGoogle Scholar
  21. Hajj GA, LJ Romans (1998) Ionospheric electron density profiles obtained with the global positioning system: results from the GPS/MET experiment. Radio Sci 33(1):175–190CrossRefGoogle Scholar
  22. Hajj GA, Wilson BD, Wang C, Pi X, Rosen IG (2004) Data assimilation of ground GPS total electron content into a physics-based ionospheric model by use of the Kalman filter. Radio Sci 39(1):RS1S05CrossRefGoogle Scholar
  23. Kelley MC (1989) The Earth’s ionosphere. Academic, San DiegoGoogle Scholar
  24. Kersley L, Klobuchar JA (1978) Comparison of protonospheric electron content measurements from the American and European Sectors. Geophys Res Lett 5(2):123–126Google Scholar
  25. Kunitsyn VE, Tereshchenko ED (2003) Ionospheric tomography. Springer, Berlin Heidelberg New YorkGoogle Scholar
  26. Lee L-C, Rocken C, Kursinski R (eds) (2001) Applications of constellation observing system for meteorology, ionosphere & climate. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Leitinger R, Hartmann GK, Lohmar F-J, Putz E (1984) Electron content measurements with geodetic Doppler receivers. Radio Sci 19(3):789–897Google Scholar
  28. Li F, Parrot M (2006) Total electron content variations observed by a DORIS station during the 2004 Sumatra–Andaman earthquake. J Geod (this issue). DOI 10.1007/s00190-006-0053-9Google Scholar
  29. Mannucci A, Wilson BD, Yuan D, Ho C, Lindqwister U, Runge T (1998) A global mapping technique for GPS-derived ionospheric total electron content measurements. Radio Sci 33(3):565–582CrossRefGoogle Scholar
  30. Na HR (guest editor) (1994) Special issue: computerized ionospheric tomography, int J Imaging Syst Technol 5(2)Google Scholar
  31. Nouel F, Berthias JP, Deleuze M, Guitart A, Laudet P, Piuzzi A, Pradines D, Valorge C, Dejoie C, Susini MF, Taburiau D (1994) Precise Centre National d’Etudes Spatiales orbits for TOPEX/Poseidon – is reaching 2-cm still a challenge. J Geophys Res 99(C12):24405–24419CrossRefGoogle Scholar
  32. Ogawa T, Sinno K, Fujita M, Awaka J (1980) Severe disturbances of VHF and GHz waves from geostationary satellites during a magnetic storm. J Atmos Terr Phys 42(7):637–644CrossRefGoogle Scholar
  33. Parrot M, Li F (2004) On the TEC determination from the ionospheric DORIS products. In: IDS plenary meeting, ParisGoogle Scholar
  34. Presser A, Camparo J (2002) Examination of a crystal oscillator’s frequency fluctuations during the enhanced space-radiation environment of a solar flare. IEEE Trans Nucl Sci 49(5):2605–2609CrossRefGoogle Scholar
  35. Pryse SE (2003) Radio tomography: a new experimental technique. Surv in Geophys 24(1):1–38CrossRefGoogle Scholar
  36. Ramo S, Whinnery JR, Van Duzer T (1965) Fields and waves in communication electronics. Wiley, New YorkGoogle Scholar
  37. Saito A, Fukao S, Miyazaki S (1998) High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophys Res Lett 25(16):3079–3082CrossRefGoogle Scholar
  38. Scherliess L, Schunk RW, Sojka JJ, Thompson DC (2004) Development of a physics-based reduced state Kalman filter for the ionosphere. Radio Sci 39(1):RS1S04CrossRefGoogle Scholar
  39. Schmidt G, Taurianen A (1975) The localization of ionospheric irregularities by the holographic method. J Geophys Res 80:4312–4324Google Scholar
  40. Schreiner WS, Sokolovskiy SV, Rocken C, Hunt DC (1999) Analysis and validation of GPS/MET radio occultation data. Radio Sci 34(4):949–966CrossRefGoogle Scholar
  41. Skone S, Yousuf R, Coster A (2004) Performance of the wide area augmentation system for ionospheric storm events. J Glob Position Syst 3(1–2):251–258CrossRefGoogle Scholar
  42. Sokolovskiy S, Schreiner W, Rocken C, Hunt D (2002) Detection of high-altitude ionospheric irregularities with GPS/MET. Geophys Res Lett 29(3): Art. No. 1033Google Scholar
  43. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The international DORIS service. Adv Space Res 36(3):333–341CrossRefGoogle Scholar
  44. Thampi SV, Pant TK, Ravindran S, Devasia CV, Sridharan R (2004) Simulation studies on the tomographic reconstruction of the equatorial and low-latitude ionosphere in the context of the Indian tomography experiment: CRABEX. Ann Geophys 22(10):3445–3460CrossRefGoogle Scholar
  45. Trigunait A, Parrot M, Pulinets S, Li F (2004) Variations of the ionospheric electron density during the Bhuj seismic event. Ann Geophys 22(12):4123–4131Google Scholar
  46. Valladares C E, Villalobos J, Sheehan R, Hagan MP (2004) Latitudinal extension of low-latitude scintillations measured with a network of GPS receivers. Annales Geophysicae 22(9):3155–3175Google Scholar
  47. Wang C, Hajj G Pi X, Rosen IG, Wilson B (2004) Development of the global assimilative ionospheric model. Radio Sci 39(1):RS1S06 DOI 10.1029/2002RS002854CrossRefGoogle Scholar
  48. Ware R, Exner M, Feng D, Gorbunov M, Hardy K, Herman B, Kuo Y, Meehan T, Melbourne W, Rocken C, Schreiner W, Sokolovskiy S, Solheim F, Zou X, Anthes R, Businger S, Trenberth K (1996) GPS sounding of the atmosphere from low Earth orbit: preliminary results. Bull Am Met Soc 77:19–40CrossRefGoogle Scholar
  49. Warnant R, Morel L, Stankov S, Jodogne J-C, Nebdi H, Jakowski N (2003) The use of DORIS as a tool to study the Earth ionosphere. In: IDS analysis workshop, Marne la Vallée, 20–21 February 2003,Google Scholar
  50. Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 Precise Orbit determination based on ITRF2000, methods and realizations. J Geod. 79(6–7):370–378 DOI 10.1007/s00190-005-0475-9CrossRefGoogle Scholar
  51. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the south atlantic anomaly. C R Geosci 336(9):839–846CrossRefGoogle Scholar
  52. Willis P, Boucher C, Fagard H, Altamimi Z (2005) Geodetic applications of the DORIS system at the French Institut Geographique National. CR Geosci 337(7):653–662 DOI 10.1016/j.crte.2005.03.002CrossRefGoogle Scholar
  53. Yeh KC, Swenson GW (1959) The scintillation of radio signals form satellites. J Geophys Res 64:2281–2286CrossRefGoogle Scholar
  54. Zalesak ST, Ossakow ST, Chaturvedi PK (1982) Non-linear equatorial spread-F – the effect of neutral winds and background Pedersen conductivity. J Geophys Res 87(NA1):151–166Google Scholar
  55. Zaslavski Y, Parrot M, Blanc E (1998) Analysis of TEC measurements above active seismic regions. Phys Earth Planet Inter 105(3–4): 219–228CrossRefGoogle Scholar
  56. Zlotnicki V (1994) Correlated environmental corrections in TOPEX/ Poseidon with a note on ionospheric accuracy. J Geophys Res 99(C12):24907–24914CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Paul A. Bernhardt
    • 1
    Email author
  • Carl L. Siefring
    • 1
  • Ivan J. Galysh
    • 2
  • Thomas F. Rodilosso
    • 2
  • Douglas E. Koch
    • 2
  • Thomas L. MacDonald
    • 2
  • Matthew R. Wilkens
    • 3
  • G. Paul Landis
    • 3
  1. 1.Plasma Physics DivisionNaval Research LaboratoryWashingtonUSA
  2. 2.Space Systems Development DepartmentNaval Research LaboratoryWashingtonUSA
  3. 3.SFA IncorporatedCroftonUSA

Personalised recommendations