Journal of Geodesy

, Volume 80, Issue 8–11, pp 419–427 | Cite as

On-line Resources Supporting the Data, Products, and Information Infrastructure for the International DORIS Service

  • C. NollEmail author
  • L. Soudarin
Original Article


The International DORIS Service (IDS) was formed under the direction of the International Association of Geodesy (IAG) in 2003 to support geodetic research utilizing DORIS data and products. The IDS is organized into a hierarchy of components: network of Tracking Stations, Satellite Segment, Data Centers, Analysis Centers, Central Bureau, and Governing Board. The DORIS infrastructure consists of a globally distributed network of over 50 ground beacons and a constellation of five satellites equipped with receivers that relay range rate measurements through a central collection facility to the IDS archives. The Data Centers and Central Bureau supporting the IDS are the primary means of distributing DORIS data, products, and general information to the user community. These facilities utilize Web and ftp servers, as well as an email service, to support the users of DORIS data and products. The current status and recent developments of these components are discussed, as well as a review of available information, data, and geodetic product types.


DORIS IDS Space geodesy GGOS Reference frames Tracking networks Precise orbit determination Earth orientation parameters 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000, a new release of the International Terrestrial Reference Frame for Earth science applications. J Geophys Res 107(B10):2214, DOI: 10.1029/2001JB000561CrossRefGoogle Scholar
  2. Altamimi Z, Boucher C, Willis P (2005) Terrestrial reference frame requirements within GGOS. J Geodyn 40(4–5):363–374, DOI: 10.1016/j.jog.2005.06.002CrossRefGoogle Scholar
  3. Altamimi Z, Collilieux X, Boucher C (2006), DORIS contributions to ITRF2005. J Geod (submitted)Google Scholar
  4. Amalvict M, Willis P, Shibuya K (2006) Status of DORIS in Antarctica for precise geodesy. In: IAG 2005 Proceedings. Springer, Berlin Heidelberg New YorkGoogle Scholar
  5. Bernhardt PA, Siefring CL (2006) Ionospheric applications of the scintillation and tomography receiver in space (CITRIS) used with the DORIS Radio Beacon Network. J Geod (in press)Google Scholar
  6. Berthias JP (2003) Trends in DORIS data formats. IDS Analysis Workshop, Marne-la-ValléeGoogle Scholar
  7. Berthias JP (2004) Evolution of the content of the DORIS data files. IDS Plenary meeting, ParisGoogle Scholar
  8. Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS): an interdisciplinary service in support of earth sciences. Adv Space Res 23(4):631–635, DOI: 10.1016/S0273-1177(99)00161-1CrossRefGoogle Scholar
  9. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103, DOI: 10.1029/2002JB002082CrossRefGoogle Scholar
  10. Blewitt G, Bock Y, Kouba J (1995). Constructing the IGS polyhedron by distributed processing. In: Zumberge J (eds). Proceedings of the IGS Workshop. IGS Central Bureau, Pasadena, pp. 21–36Google Scholar
  11. Bouillé F, Cazenave A, Lemoine JM, Crétaux JF (2000) Geocentre motion from the DORIS space system and laser data to the LAGEOS satellites, comparison with surface loading data. Geophys J Int 143(1):71–82, DOI: 10.1046/j.1365-246x.2000.00196.xCrossRefGoogle Scholar
  12. Cazenave A, Dominh K, Ponchaut F, Soudarin L, Crétaux JF, Le Provost C (1999) Sea-level changes from TOPEX/Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophys Res Lett 26(14):2077–2080, DOI: 10.1029/1999GL900215CrossRefGoogle Scholar
  13. Crétaux JF, Soudarin L, Cazenave A, Bouillé F (1998) Present day tectonic plate motions and crustal deformations from the DORIS space system. J Geophys Res 103(B12):30167–30181, DOI: 10.1029/98JB02239CrossRefGoogle Scholar
  14. Crétaux JF, Soudarin L, Davidson FJM, Gennero MC, Berge-Nguyen M, Cazenave A (2002) Seasonal and interannual geocenter motion from SLR and DORIS measurements, Comparison with surface loading data. J Geophys Res 107(B12):2374, DOI: 10.1029/2002JB001820CrossRefGoogle Scholar
  15. Fagard H (2006) 20 years of evolution for the DORIS permanent network, from its initial deployment to its renovation. J Geod (submitted)Google Scholar
  16. Feissel-Vernier M, Le Bail K, Bério P, Coulot D, Ramillien G, Valette JJ (2006) Geocenter motion measured by DORIS and SLR and geophysical evidence. J Geod (submitted)Google Scholar
  17. Gambis D (2004) Monitoring Earth orientation using space-geodetic techniques, state-of-the-art and prospective. J Geod 78(4–5):295–303, DOI: 10.1007/s00190-004-0394-1CrossRefGoogle Scholar
  18. Gambis D (2006) DORIS the determination of the Earth’s polar motion. J Geod same issue, DOI: 10.1007/s00190-006-0043-y (in press)Google Scholar
  19. Gerasimenko MD, Kolomiete AG, Kasahara M, Crétaux JF, Soudarin L (2006) Establishment of the three-dimensional kinematic reference frame by VLBI and DORIS global data. Far Eastern Math J (in press)Google Scholar
  20. Haines BJ, Bar-Sever YE, Bertiger WI, Desai S, Willis P (2004) One-centimeter orbit determination for Jason-1, New GPS-Based Strategies. Marine Geod 27(1–2):299–318, DOI: 10.1080/014904 10490465300CrossRefGoogle Scholar
  21. Jayles C, Nhun Fat B, Tourain C (2006) DORIS, System description and control of the signal integrity. J Geod same issue, DOI: 10.1007/s00190-006-0046-8 (in press)Google Scholar
  22. Le Bail K (2006) Estimating the noise in space-geodetic positioning. The case of DORIS. J Geod (submitted)Google Scholar
  23. Luthcke SB, Zelensky NP, Rowlands DD, Lemoine FG, Williams TA (2003) The 1-centimeter orbit: Jason-1 precision orbit determination using GPS, SLR, DORIS and Altimeter Data. Marine Geod 26(3–4):399–421Google Scholar
  24. Noll C, Dube M (2001) The IGS Global Data Center at CDDIS—an update, physics and chemistry of the earth. Solid Earth and Geodesy 26(6–8):603–604, DOI: 10.1016/S1464-1895(01)00108-9CrossRefGoogle Scholar
  25. Pearlman MR, Degnan JJ, Bosworth JM (2002) The International Laser Ranging Service. Adv Space Res 30(2):135–143, DOI: 10.1016/S0273-1177(02)00277-6CrossRefGoogle Scholar
  26. Schlueter W, Himwich E, Nothnagel A, Vandenberg N, Whitney A (2002) IVS and its important role in the maintenance of the Global Reference Systems. Adv Space Res 30(2):145–150, DOI: 10.1016/S0273-1177(02)00278-8CrossRefGoogle Scholar
  27. Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays during the CONT02 campaign. J Geod 79 (10–11):613–623, DOI:10.1007/s00190-005-0010-zCrossRefGoogle Scholar
  28. Soudarin L, Crétaux JF (2006) A model of present-day tectonic plate motions from 12 years of DORIS measurements. J Geod (submitted)Google Scholar
  29. Soudarin L, Crétaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210, DOI: 10.1029/1999GL900215CrossRefGoogle Scholar
  30. Tavernier G, Granier JP, Jayles C, Sengenes P, Rozo F (2003) The current evolutions of the DORIS system. Adv Space Res 31(8):1947–1952, DOI: 10.1016/S0273-1177(03)00155-8CrossRefGoogle Scholar
  31. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341, DOI: 10.1016/j.asr.2005.03.102CrossRefGoogle Scholar
  32. Tavernier G, Fagard H, Feissel-Vernier M, Le Bail K, Lemoine F, Noll C, Noomen R, Ries J, Soudarin L, Valette J, Willis P (2006) The International DORIS Service: Genesis and Early Achievements. J Geod (submitted)Google Scholar
  33. Trigunait A, Parrot M, Pulinets S, Li F (2004) Variations of the ionospheric electron density during the Bhuj seismic event. Ann Geophys 22(12):4123–4131CrossRefGoogle Scholar
  34. Willis P, Ries JC (2005) Defining a core network for Jason-1 precise orbit determination. J Geod 79(6–7):370–378, DOI: 10.1007/s00190-005-0475-9CrossRefGoogle Scholar
  35. Willis P, Haines B, Bar-Sever Y, Bertiger W, Muellerschoen R, Kuang D, Desai S (2003) TOPEX/Jason combined GPS/DORIS orbit determination in the tandem phase. Adv Space Res 31(8):1941–1946, DOI: 10.1016/S0273-1177(03)00156-XCrossRefGoogle Scholar
  36. Willis P, Boucher C, Fagard H, Altamimi Z (2005a) Geodetic applications of the DORIS system at the French ‘Institut Geograph- ique National’. CR Geosci 337(7):653–662, DOI: 10.1016/j.crte. 2005.03.002CrossRefGoogle Scholar
  37. Willis P, Desai SD, Bertiger WI, Haines BJ, Auriol A (2005b) DORIS satellite antenna maps derived from long-term residuals time series. Adv Space Res 36(3):486–497, DOI: 10.1016/j.asr.2005.03.095CrossRefGoogle Scholar
  38. Willis P, Lemoine FG, Soudarin L (2006) Looking for systematic error in scale from terrestrial reference frames derived from DORIS data. In: IAG Proceedings, Springer, Berlin Heidelberg. New York (in press)Google Scholar
  39. Zandbergen R, Otten M, Righetti PL, Kuijper D, Dow JM (2003) Routine operational and high-precision orbit determination of Envisat. Adv Space Res 31(8):1953–1958, DOI: 10.1016/S0273-1177(03)00154-6CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.NASA Goddard Space Flight CenterGreenbeltUSA
  2. 2.Collecte Localisation Satellites (CLS)Ramonville Saint-AgneFrance

Personalised recommendations