Journal of Geodesy

, Volume 80, Issue 8–11, pp 457–472 | Cite as

DORIS: System Description and Control of the Signal Integrity

Original Article

Abstract

Since 1990, DORIS has evolved from a core system initially devoted to altimetry and precise positioning to become a very complete system today, able to deliver both real-time products and very precise retrieved orbits at the 1 cm level. The first part of this paper is an overall description of the DORIS system, as it is today after more than 15 years. The main components of the system are detailed, and their external and internal connections are described. The second part presents the different DORIS products, which are generated and used by the scientific community in the context of the International DORIS Service (IDS). The quality of these products is discussed by comparison with other techniques, which tends to prove in our opinion that these different geodetic techniques are complementary for scientific research. Finally, the third part of the paper focuses on the work of the DORIS integrity team, which checks the data daily in order to verify the integrity of the system, i.e. its compliance with its specifications. This activity implies immediate detection of every beginning of an incident, long before it can be detected by the users. This integrity work has been reinforced recently, and now these controls can be described. Today, DORIS is able to guarantee to its users a 99.7% availability of its products, and a 100% integrity of the system.

Keywords

DORIS Precise orbit determination Geodesy System integrity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000, a new release of the international terrestrial reference frame for earth science applications. J Geophys Res 107(B10):2214 DOI 10.1029/2001JB000561CrossRefGoogle Scholar
  2. Altamimi Z, Boucher C, Willis P (2005) Terrestrial reference frame requirements within GGOS. J Geod 40(4–5):363-374 DOI 10.1016/j.jog.2005.06.02Google Scholar
  3. Blewitt G (2003) Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J Geophys Res 108(B2):2103 DOI 10.1029/2002JB002082CrossRefGoogle Scholar
  4. Bouille F, Cazenave A, Lemoine JM, Crétaux JF (2000) Geocentre motion from the DORIS space system and laser data to the LAGEOS satellites, comparison with surface loading data. Geophys J Int 143(1):71–82 DOI 10.1046/j.1365-246x.2000.00196.xCrossRefGoogle Scholar
  5. Cazenave A, Valette JJ, Boucher C (1992) Positioning with DORIS data on SPOT-2 after a first year of mission. J Geophys Res 97(B5):7109–7119CrossRefGoogle Scholar
  6. Cazenave A, Dominh K, Ponchaut F, Soudarin L, Crétaux JF, Le Provost C (1999) Sea-level changes from TOPEX/Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS. Geophys Res Lett 26(14):2077–2080CrossRefGoogle Scholar
  7. Choi KR, Ries J, Tapley B (2004) Jason-1 precision orbit determination by combining SLR and DORIS with GPS tracking data. Mar Geod 27(3–4):319–331CrossRefGoogle Scholar
  8. Costes M, Vincent P (1998) DORIS: contribution on an orbit determination system to accurate and long term altimetry from space. In: Rummel R, Drewes H, Bosch W, Hornik H (eds) Towards an integrated global geodetic observing system (IGGOS), pp 150–153Google Scholar
  9. Costes M, Jayles C (1999) DORIS-DIODE: one-year results of the first European Navigator, International Astronautical Federation Congress, Amsterdam, IAF-99-A.7.04Google Scholar
  10. Crétaux JF, Soudarin L, Cazenave A, Bouillé F (1998) Present day tectonic plate motions and crustal deformations from the DORIS space system. J Geophys Res 103(B12):30167–30181 DOI 10.1029/98JB02239; 10.1029/2002JB001820, 2002CrossRefGoogle Scholar
  11. Crétaux JF, Soudarin L, Davidson FJM, Gennero MC, Berge-Nguyen M, Cazenave A (2002) Seasonal and interannual geocenter motion from SLR and DORIS measurements: comparison with surface loading data. J Geophys Res 107(B12):2374 DOI 10.1029/2002JB001820CrossRefGoogle Scholar
  12. Debaisieux A, Aubry JP, Brunet M (1986) A satellite oscillator for very precise orbitography, the DORIS program. IEEE Trans Ultrason Ferroelectr Freq Control 33(1):121Google Scholar
  13. Dorrer M, Laborde B, Deschamps P (1991), DORIS (Doppler Orbitography and Radiopositioning Integrated from Space), System assessment results with DORIS on SPOT-2. Acta Astron 25(8–9):497–504CrossRefGoogle Scholar
  14. Fagard H (2004) (DORIS) network 2004 review, evolution, maintenance, collocations, IDS Plenary Meeting, Paris, 3–4 May 2004Google Scholar
  15. Foucher F, Ciavaldini JF (1991) Modeling the ionospheric electron- for the correction of altimetric measurements. Pure Appl Geophys 135(5):475–491CrossRefGoogle Scholar
  16. Fridelance P, Samain E, Veillet C (1997) T2L2 – time transfer by laser link: a new optical time transfer generation. Exp Astron 7(3):191–207CrossRefGoogle Scholar
  17. Gambis D (2004) Monitoring Earth orientation using space-geodetic techniques, state-of-the-art and prospective. J Geod 78(4–5):295–303 DOI 10.1007/s00190-004-0394-1CrossRefGoogle Scholar
  18. Jayles C (1999) Navigateur DIODE: six mois de fonctionnement à bord de SPOT4, Note Tech CNES n°139, ToulouseGoogle Scholar
  19. Jayles C, Costes M (2004) Ten centimeter orbits in real-time on-board of a satellite: DORIS-DIODE current status. Acta Astron 54(5):315–323 DOI 10.1016/S0094-5765(03)00048-1CrossRefGoogle Scholar
  20. Jayles C, Berthias JP, Laurichesse D, Nordine S, Cauquil P, Tavernier G (2002) DORIS-DIODE, two year results of the first European navigator. Adv Space Res 30(2):301–306CrossRefGoogle Scholar
  21. Jayles C, Vincent P, Rozo F, Balandreaud F (2004) DORIS-DIODE: Jason-1 has a navigator on board. Mar Geod 27(3–4):753–771 DOI 10.1080/01490410490889085CrossRefGoogle Scholar
  22. Kaniuth K, Huber S (2003) An assessment of radome effects on heights estimates in the EUREF network, Mitt. Bundemsamt für Kartographie und Geodäsie. EUREF 29(12):97–102Google Scholar
  23. Kristiansen O, Jaldehag K, Jarlemark P, Johansson JM, Plag HP (2004) Geodetic galileo: system requirements for highly accurate broadcast orbits and clocks, EGU04-A-06479, G8-1TU1O-006.Google Scholar
  24. Laborde B (1987) The DORIS orbitography and positioning system, the DORIS SPOT2 mission. Acta Astron 16:193–198CrossRefGoogle Scholar
  25. Le Bail K (2004) Etude Statistique de la stabilité des stations de géodésie spatiale – Application à DORIS - Thèse de doctorat, Observatoire de ParisGoogle Scholar
  26. Le Bail K, Feissel-Vernier M (2004) A proposed method for qualifying the time stability of terrestrial reference frames, Symposium G7, 1st European Geoscience Union General Assembly, NiceGoogle Scholar
  27. Luthcke S, Zelensky N, Rowland DD, Lemoine FG, Williams TA (2003) The 1-cm orbit, Jason-1 precise orbit determination using GPS, SLR, DORIS and altimeter data. Mar Geod 26(3–4):399–421 DOI 10.1080/01490410390256727Google Scholar
  28. Mangiarotti S, Cazenave A, Soudarin L, Cretaux JF (2001) Annual vertical crustal motions predicted from surface mass redistribution and observed by space geodesy. J Geophys Res 106(B3):4277–4291CrossRefGoogle Scholar
  29. Nhun-Fat B, Biancale R, Valette JJ, Minster JF (1992) Geometric improvement of the SPOT satellite orbit using DORIS Doppler residual data. J Geophys Res 97(B11):15405–15413Google Scholar
  30. Noll C, Dube M (2001) IGS global data center at the CDDIS, an update. Phys Chem Earth Solid Earth Geod 26(6–8):603–604CrossRefGoogle Scholar
  31. Nouël F, Bardina J, Jayles C, Labrune Y, Truong B (1988) DORIS: a precise satellite positionning Doppler system, Astrodynamics 1987, Soldner JK, MIsra AK, Lindberg RE, Williamson W (eds), vol 65, Adv Astron Sci, American Astronautical Society, Springfield, pp 311–320Google Scholar
  32. Nouël F, Berthias JP, Deleuze M, Guitart A, Laudet P, Piuzzi A, Pradines D, Valorge C, Dejoie C, Susini MF, Taburiau D (1994) Precise Centre National d’Etudes Spatiales orbits for TOPEX/Poseidon, Is 2-cm still a challenge?. J Geophys Res 99(C12):24405–24419CrossRefGoogle Scholar
  33. Pavlis EC, Mertikas SP, Gavdos team (2004) The Gavdos mean sea level and altimeter calibration facility, Results from Jason-1. Mar Geod 27(3–4):631–655 DOI 10.1080/01490410490902106CrossRefGoogle Scholar
  34. Rothacher M (2002) Estimation of station heights with GPS. In: Drewes H, Dodson A, Fortes LPS, Sanchez L, Sandoval P (eds) Vertical reference systems. Springer, Berlin Heidelberg New York, pp 81–90Google Scholar
  35. Rothacher M, Dill R, Thaller G (2004) The IERS combination pilot project, First European Geoscience Union meeting, Nice, France, 25–30 April 2004, EGU04-A-06622Google Scholar
  36. Rummel R, Rothacher M, Beutler G (2005) Integrated global geodetic observing system (IGGOS), Science Rationale. J Geodyn 40(4–5):357–362 DOI 10.1016/j.jog.2005.06.003CrossRefGoogle Scholar
  37. Sengenes P, Jayles C (2005) Modelling of DORIS 2GM and CryoSat instruments, CNES technical note. ftp://ftp.cls. fr/pub/ids/satellites/DORIS_instrument_modelling_2G_cryosat_14815_ 42.pdfGoogle Scholar
  38. Soudarin L, Crétaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210CrossRefGoogle Scholar
  39. Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79(10–11):613–623 DOI 10.1007/s00190-005-0010-zCrossRefGoogle Scholar
  40. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi E, Gunter B, Kang Z, Pator R, Pekker T, Poole S, Wang F (2005) GGM02C, an improved Earth gravity field model from GRACE. J Geod 79(8):467–478 DOI 10.1007/s00190-005-0480-zCrossRefGoogle Scholar
  41. Tavernier G, Granier JP, Jayles C, Sengenes P, Rozo F (2003) The current evolutions of the DORIS system. Adv Space Res 31(8):1947–1952 DOI 10.1016/S0273-1177(03)00155-8CrossRefGoogle Scholar
  42. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries JC, Soudarin L, Willis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341 DOI 10.16/j.asr.2005.03.102CrossRefGoogle Scholar
  43. Trigunait A, Parrot M, Pulinets S, Li F (2004) Variations of the ionospheric electron density during the Bhuj seismic event. Ann Geophys 22(12):4123–4131CrossRefGoogle Scholar
  44. Valette JJ, Altamimi Z, Feissel-Vernier M (2004) DORIS pilot experiment: report on the 2002 IDS campaign. http://lareg.ensg.ign.fr/IDS/events/2002_camp_report.pdfGoogle Scholar
  45. Warnant R (2003) The use of DORIS as a tool to study the Earth’s ionosphere, IDS Analysis Workshop, Marne-la-Vallée. http://ids.cls.fr/html/report/peer-reviewed_journals.htmlGoogle Scholar
  46. Watkins M, Ries JC, Davis GW (1992) Absolute positioning using DORIS tracking of the SPOT-2 satellite. Geophys Res Lett 19(20):2039–2042Google Scholar
  47. Willis P, Heflin M (2004) External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results. Geophys Res Lett 31(13):L13616 DOI: 10.1029/GL020038CrossRefGoogle Scholar
  48. Willis P, Ries JC (2005) Defining a core network for Jason-1 Precise Orbit Determination. J Geod 79(6–7):370–378 DOI 10.1007/ s00190-005-0475-9CrossRefGoogle Scholar
  49. Willis P, Bar-Sever Y, Doerflinger E, Zumberge J (1998) Using DORIS data for determining the tropospheric delay: Implications on climatology and meteorology, Proc DORIS Days, Toulouse, 27–29 April 1998Google Scholar
  50. Willis P, Haines B, Bar-Sever Y, Bertiger W, Muellerschoen R, Kuang D, Desai S (2003) TOPEX/Jason combined GPS/DORIS orbit determination in the tandem phase. Adv Space Res 31(8):1941–1946 DOI 10.1016/S0273-1177(03)00156-XCrossRefGoogle Scholar
  51. Willis P, Haines B, Berthias JP Sengenes P, Le Mouel JL (2004) Behaviour of the DORIS/Jason oscillator over the South Atlantic Anomaly. CR Geosci 336(9):839–846 DOI 10.1016/j.crte.2004. 01.004CrossRefGoogle Scholar
  52. Willis P, Boucher C, Fagard H, Altamimi Z (2005a) Applications géodésiques du système DORIS à l’Institut Géographique National, Geodetic applications of the DORIS system at the French Institut Geographique National. CR Geoscience 337(7):653–662 DOI 10.1016/j.crte.2005.03.002Google Scholar
  53. Willis P, Bar-Sever Y, Tavernier G (2005b) DORIS as a potential part of a global geodetic observing system. J Geodyn 40(4–5):494–501 DOI 10.1016/j.jog.2005.06.011CrossRefGoogle Scholar
  54. Willis P, Desai SD, Bertiger WI, Haines BJ, Auriol A (2005c) DORIS satellite antenna maps derived from long-term residuals time series. Adv Space Res 36(3):486–497 DOI 10.1016/j.asr.2005.03.095CrossRefGoogle Scholar
  55. Willis P, Jayles C, Bar-Sever Y (2006) DORIS: from missions orbit determination to geodesy. CR Geosci DOI 10.1016/j.crte.2005.11.013 (in press)Google Scholar
  56. Wingham D (2005) CryoSat, a mission to the ice fields of Earth. Eur Space Agency Bull 122:10–17Google Scholar
  57. Zandbergen R, Otten M, Righetti PL, Kuijper D, Dow JM (2003) Routine operational and high-precision orbit determination of ENVISAT. Adv Space Res 31(8):1953–1958 DOI 10.1016/S0273-1177(03)00154-6CrossRefGoogle Scholar
  58. Zelensky NP, Chinn D, Rowlands D, Lemoine F (2000) Improving the TOPEX/Poséidon orbit using DORIS tracking, IDS workshop, Toulouse. http://ids.cls.fr/html/report/doris_days_2000/zelensky.pdfGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Centre National d’Etudes Spatiales (CNES)Toulouse cedex 9France
  2. 2.Collecte et Localisation par Satellites (CLS)Ramonville St. AgneFrance

Personalised recommendations