Advertisement

Journal of Geodesy

, Volume 80, Issue 3, pp 150–162 | Cite as

Uncertainty in GPS Networks due to Remaining Systematic Errors: The Interval Approach

  • S. SchönEmail author
  • H. Kutterer
Original Article

Abstract

A realistic assessment of the total uncertainty budget of Global Positioning System (GPS) observations and its adequate mathematical treatment is a basic requirement for all analysis and interpretation of GPS-derived point positions, in particular GPS heights, and their respective changes. This implies not only the random variability but also the remaining systematic errors. At present in geodesy, the main focus is on stochastic approaches in which errors are modeled by means of random variables. Here, an alternative approach based on interval mathematics is presented. It allows us to model and to quantify the impact of remaining systematic errors in GPS carrier-phase observations on the final results using deterministic error bands. In this paper, emphasis is given to the derivation of the observation intervals based on influence parameters and to the study of the complex linear transfer of this type of uncertainty to estimated point positions yielding zonotopes. From the presented simulation studies of GPS baselines, it turns out that the uncertainty due to remaining systematic effects dominates the total uncertainty budget for baselines longer than 200 km.

Keywords

GPS Systematic errors Interval mathematics Imprecision Zonotopes Troposphere 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New YorkGoogle Scholar
  2. Beutler G, Bauersima I, Gurtner W, Rothacher M, Schildknecht T, Geiger A (1988) Atmospheric refraction and other important biases in GPS carrier phase observations. In: Brunner FK (eds) Atmospheric effects on geodetic space measurements. Monograph12, School of Surveying University of New South Wales, Sydney, pp 15–44Google Scholar
  3. Breams I, Kieffer M, Walter E (2003) Prior characterization of the performance of software sensors. In: Proceedings of the SysId2003, Rotterdam, pp 313–318Google Scholar
  4. Brunner FK (1994) On the deformation of GPS networks. In: Proceedings of the XX FIG Congress, Melbourne, pp T501.4 1–T501.4 8Google Scholar
  5. Brunner FK, Tregoning P (1994) Tropospheric propagation effects in GPS height results using meteorological observations. Aust J Geod Photogram Surv 60:49–65Google Scholar
  6. Heindl G, Reinhart E (1975) Adjustment by the principle of minimal maximum error In: Beiträge der Bundesrepublik Deutschland zur Vorlage bei der XVI. Generalversammlung der Internationalen Union für Geodäsie und Geophysik, Grenoble 1975, Deutsche Geodätische Kommission, B 213:33–44Google Scholar
  7. ISO (1995) Guide to the expression of uncertainty in measurements (GUM). International Organization for Standardization, GenevaGoogle Scholar
  8. Jaulin L, Kieffer M, Didrit O, Walter E (2001) Applied interval analysis. Springer, LondonGoogle Scholar
  9. Kieffer M, Jaulin L, Walter E, Meizel D (2000) Robust autonomous robot localization using interval analysis. Reliab Comput 6:337–362CrossRefGoogle Scholar
  10. Klatte R, Kulisch U, Neaga M, Ratz D, Ullrich C (1991) PASCAL XSC – Sprachbeschreibung in Beispielen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. Koch KR. (1999). Parameter estimation and hypothesis testing in linear models. Springer, Berlin Heidelberg New YorkGoogle Scholar
  12. Kouba J (2003) A guide to using international GPS service (IGS) products (http://igscb.jpl.nasa.gov/igscb/resource/pubs/ GuidetoUsingIGSProducts.pdf)Google Scholar
  13. Kreinovich V (1995) Data processing beyond traditional statistics: applications of interval computations. Supplement of the Journal of Reliable Computing, pp 13–21Google Scholar
  14. Kuang D, Schutz BE, Watkins MM (1996) On the structure of geometric positioning information in GPS measurements. J Geod 71(1):35–43CrossRefGoogle Scholar
  15. Kutterer H (1994) Intervallmathematische Behandlung endlicher Unschärfen linearer Ausgleichungsmodelle, Deutsche Geodätische Kommission C 423, MünchenGoogle Scholar
  16. Kutterer H (2001) An imprecise search space for GPS phase ambiguity parameters. In: Carosio A, Kutterer H (eds) First international symposium on robust statistics and fuzzy techniques in geodesy and GIS. ETH Zurich Institute of Geodesy and Photogrammetry, Bericht 295, pp 215–220Google Scholar
  17. Lachapelle G, Alves P (2002) Multiple reference station approach: overview and current research. J Glob Position Syst 1(2):13–136Google Scholar
  18. Leick A (1995) GPS satellite surveying. Wiley, New YorkGoogle Scholar
  19. Leinen S (2001) Fuzzy-logic based GPS on-the-fly ambiguity search. In: Carosio A, Kutterer H (eds) First international symposium on robust statistics and fuzzy techniques in geodesy and GIS. ETH Zurich Institute of Geodesy and Photogrammetry, Bericht 295, pp 209–214Google Scholar
  20. Muhanna R, Mullen R (2004) Proceedings of the NSF workshop on reliable engineering computing, SavannahGoogle Scholar
  21. Neumeier A (1990) Interval methods for linear systems of equations. Cambridge University Press, CambridgeGoogle Scholar
  22. Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3227–3246CrossRefGoogle Scholar
  23. Rizos C, Han S (2003) Reference station network based RTK systems – concepts and progress. Wuhan Univ J Nat Sci 8(2B):566–574CrossRefGoogle Scholar
  24. Rump S (2004) INTLAB INTerval LABoratory, a Matlab toolbox for verified computations Vers.4.0 (http://www.ti3.ttu-harburg.de~rump/intlab/)Google Scholar
  25. Saastamoinen J (1973) Contribution to the theory of atmospheric refraction. Part II Refraction corrections in satellite geodesy. Bulletin Géodésique 107:13–34Google Scholar
  26. Santerre R (1991) Impact of GPS satellite sky distribution. Manuscripta Geodaetica 16(1):28–53Google Scholar
  27. Schmidbauer HO, Schnädelbach K (1991) Computation of the point positions in three-dimensional networks on the base of tolerance intervals for the observations. Manuscripta Geodaetica 16(2):111–117Google Scholar
  28. Schmitt G (1977) Some considerations using interval analysis in adjustment computations, Deutsche Geodätische Kommission B 221:87–97 Frankfurt/MainGoogle Scholar
  29. Schön S (2003) Analyse und Optimierung geodätischer Messanordnungen unter besonderer Berücksichtigung des Intervallansatzes. Dissertation, Deutsche Geodätische Kommission C 567. MünchenGoogle Scholar
  30. Schön S, Kutterer H (2003) Imprecision in Geodetic Observations – case study GPS monitoring network. In: Stiros S, Pytharouli S (eds) Proceedings of the 11th: FIG international symposium on deformation measurements. Geodesy and Geodetic Applications Lab., Patras University, Publication No. 2, pp 471–478Google Scholar
  31. Schön S, Kutterer H (2005a) Realistic uncertainty measures for GPS observations. In: Sanso F (eds) A window on the future of geodesy. Springer, Berlin Heidelberg New York, pp 54–59CrossRefGoogle Scholar
  32. Schön S, Kutterer H (2005b) Using zonotopes for overestimation-free interval least-squares – some geodetic applications. Reliab Comput 11(2):137–155CrossRefGoogle Scholar
  33. Spofford PR, Remondi BW (1997) The national geodetic survey standard GPS format SP3. National Geodetic Survey National Ocean Service (NOAA), Silver SpringGoogle Scholar
  34. Viertl R (1996) Statistical methods for non-precise data. CRC Press, Boca RatonGoogle Scholar
  35. Ziegler GM (1997) Lectures on polytopes. Springer, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institute for Engineering Geodesy and Measurements SystemsGraz University of TechnologyGrazAustria
  2. 2.Geodetic InstituteUniversität HannoverHannoverGermany

Personalised recommendations