Advertisement

Journal of Geodesy

, Volume 81, Issue 1, pp 5–15 | Cite as

Wavelet Modeling of Regional and Temporal Variations of the Earth’s Gravitational Potential Observed by GRACE

  • M. J. Fengler
  • W. FreedenEmail author
  • A. Kohlhaas
  • V. Michel
  • T. Peters
Original Article

Abstract

This work is dedicated to the wavelet modeling of regional and temporal variations of the Earth’s gravitational potential observed by the GRACE (gravity recovery and climate experiment) satellite mission. In the first part, all required mathematical tools and methods involving spherical wavelets are provided. Then, we apply our method to monthly GRACE gravity fields. A strong seasonal signal can be identified which is restricted to areas where large-scale redistributions of continental water mass are expected. This assumption is analyzed and verified by comparing the time-series of regionally obtained wavelet coefficients of the gravitational signal originating from hydrology models and the gravitational potential observed by GRACE. The results are in good agreement with previous studies and illustrate that wavelets are an appropriate tool to investigate regional effects in the Earth’s gravitational field.

Keywords

Spherical wavelets GRACE (Gravity recovery and climate experiment) Gravitational field Hydrological gravity variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. Andersen OB, Hinderer J (2005) Global inter-annual gravity changes from GRACE: early results. Geophys Res Lett 32:L01402 DOI 10.1029/2004GL020948CrossRefGoogle Scholar
  2. Bettadpur S (2003) Level-2 gravity field product user handbook, GRACE 327–734. CSR Publication no. GR-03-01, University of Texas, AustinGoogle Scholar
  3. Chen JL, Wilson CR, Tapley BD, Ries JC (2004) Low degree gravitational changes from GRACE: validation and interpretation. Geophys Res Lett 31:L22607 DOI 10.1029/2004GL021670CrossRefADSGoogle Scholar
  4. Driscoll JR, Healy Jr DH (1994) Computing fourier transforms and convolutions on the 2-sphere. Adv Appl Math 15:202–250CrossRefMathSciNetGoogle Scholar
  5. Edmonds AR (1964) Drehimpulse in der Quantenmechanik. Bibliograph Inst, MannheimGoogle Scholar
  6. Fan Y, van den Dool H (2004) Climate prediction center global monthly soil moisture data set at 0.5° Resolution for 1948 to present. J Geophys Res 109:D10102 DOI 10.1029/2003JD004345CrossRefGoogle Scholar
  7. Fengler MJ (2005) Vector spherical harmonic and vector wavelet based non-linear Galerkin schemes for solving the incompressible Navier-Stokes equation on the sphere. University of Kaiserslautern, of Mathematics, Geomathematics Group, Shaker-Verlag, ISBN3-8322-4558Google Scholar
  8. Fengler MJ, Freeden W, Gutting M (2004a) Darstellung des Gravitationsfeldes und seiner Funktionale mit sphärischen Multiskalentechniken. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (ZfV) 129(5):323–334Google Scholar
  9. Fengler MJ, Freeden W, Michel V (2004b) The Kaiserslautern multiscale geopotential model SWITCH-03 from orbit perturbations of the satellite CHAMP and its comparison to the models EGM96, UCPH2002_02_05, EIGEN-1s, and EIGEN-2. Geophys J Int 157:499–514, DOI 10.1111/j.1365-246X.2004.02209.xGoogle Scholar
  10. Freeden W (1999) Multiscale modelling of spaceborne geodata. BG Teubner, StuttgartzbMATHGoogle Scholar
  11. Freeden W, Maier T (2002) On multiscale denoising of spherical functions: basic theory and numerical aspects. ETNA 14:40-62MathSciNetGoogle Scholar
  12. Freeden W, Michel V (2004) Multiscale potential theory (with applications to earth’s sciences). Birkhäuser Verlag, BostonGoogle Scholar
  13. Freeden W, Schreiner M (1995) Non-orthogonal expansions on the sphere.Math Methods Appl Sci 18:83–120CrossRefMathSciNetGoogle Scholar
  14. Freeden W, Windheuser U (1996) Spherical wavelet transform and its discretization. Adv Comput Math 5:51–94CrossRefMathSciNetGoogle Scholar
  15. Freeden W, Gervens T, Schreiner M (1998) Constructive approximation on the sphere (with applications to geomathematics). University Press Oxford, ClarendonzbMATHGoogle Scholar
  16. Han SC, Shum CK, Braun A (2005a) High-resolution continental water storage recovery from low–low satellite-to-satellite tracking. J Geodyn 39(1):11–28CrossRefGoogle Scholar
  17. Han SC, Shum CK, Jekeli C, Alsdorf D (2005b) Improved estimation of terrestrial water storage changes from GRACE. Geophys Res Lett 32:L07302 DOI 10.1029/2005GL022382CrossRefGoogle Scholar
  18. Jekeli C (1981) Alternative methods to smooth the earth’s gravity field. Report 327, Department of Geodetic Science, Survey Ohio State University, ColumbusGoogle Scholar
  19. Kohlhaas A (2005) Multiscale modelling of temporal and spatial variations in the earth’s gravity potential observed by GRACE. Diploma Thesis, Geomathematics Group, Department of Mathematics, University of KaiserslauternGoogle Scholar
  20. Maier T (2003) Multiscale geomagnetic field modelling from satellite data. PhD Thesis, Geomathematics Group, Department of Mathematics, University of KaiserslauternGoogle Scholar
  21. Mayer C (2003) Wavelet modelling of ionospheric currents and induced magnetic fields from satellite data. PhD Thesis, Geomathematics Group, Department of Mathematics, University of KaiserslauternGoogle Scholar
  22. Milly PCD, Shmakin AB (2002) Global modeling of land water and energy balances. Part I: The land dynamics (LaD) Model. J Hydrometeorol 3:283–299Google Scholar
  23. Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158:813–826. DOI 10.1111/j.1365-264X.2004.02328.xCrossRefADSGoogle Scholar
  24. Rowlands DD, Luthcke SB, Klosko SM, Lemoine FGR, Chinn DS, McCarthy JJ, Cox CM, Andersen OB (2005) Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys Res Lett 32:L04310 DOI 10.1029/2004GL021908CrossRefGoogle Scholar
  25. Swenson S, Wahr J (2002) Methods for inferring regional surface-mass anomalies from gravity recovery and climate experiment measurements of time-variable gravity. J Geophys Res 107(B9):2193. DOI 10.1029/2001JB000576CrossRefGoogle Scholar
  26. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE). Water Resour Res 39(8):1223.DOI 10.1029/2002WR001808CrossRefGoogle Scholar
  27. Tapley BD, Bettadpur S, Watkins MM, Reigber C (2004a) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607 DOI 10.1029/2004GL019920CrossRefGoogle Scholar
  28. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004b) GRACE measurements of mass variability in the Earth system. Science 305:503–505PubMedCrossRefADSGoogle Scholar
  29. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30229CrossRefADSGoogle Scholar
  30. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: first results. Geophys Res Lett 31:L11501 DOI 10.1029/2004GL019779CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • M. J. Fengler
    • 1
  • W. Freeden
    • 1
    Email author
  • A. Kohlhaas
    • 1
  • V. Michel
    • 1
  • T. Peters
    • 2
  1. 1.Department of Mathematics, Geomathematics GroupUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Institut für Astronomische und Physikalische Geodäsie (IAPG)Technische Universität MünchenMünchenGermany

Personalised recommendations