Journal of Geodesy

, Volume 80, Issue 8–11, pp 567–589 | Cite as

Plate Motion of India and Interseismic Strain in the Nepal Himalaya from GPS and DORIS Measurements

  • Pierre BettinelliEmail author
  • Jean-Philippe Avouac
  • Mireille Flouzat
  • François Jouanne
  • Laurent Bollinger
  • Pascal Willis
  • Gyani Raja Chitrakar
Original Article


We analyse geodetically estimated deformation across the Nepal Himalaya in order to determine the geodetic rate of shortening between Southern Tibet and India, previously proposed to range from 12 to 21 mm yr−1. The dataset includes spirit-levelling data along a road going from the Indian to the Tibetan border across Central Nepal, data from the DORIS station on Everest, which has been analysed since 1993, GPS campaign measurements from surveys carried on between 1995 and 2001, as well as data from continuous GPS stations along a transect at the logitude of Kathmandu operated continuously since 1997. The GPS data were processed in International Terrestrial Reference Frame 2000 (ITRF2000), together with the data from 20 International GNSS Service (IGS) stations and then combined using quasi- observation combination analysis (QOCA). Finally, spatially complementary velocities at stations in Southern Tibet, initially determined in ITRF97, were expressed in ITRF2000. After analysing previous studies by different authors, we determined the pole of rotation of the Indian tectonic plate to be located in ITRF2000 at 51.409±1.560° N and −10.915±5.556°E, with an angular velocity of 0.483±0.015°. Myr−1. Internal deformation of India is found to be small, corresponding to less than about 2 mm yr−1 of baseline change between Southern India and the Himalayan piedmont. Based on an elastic dislocation model of interseismic strain and taking into account the uncertainty on India plate motion, the mean convergence rate across Central and Eastern Nepal is estimated to 19±2.5 mm yr−1, (at the 67% confidence level). The main himalayan thrust (MHT) fault was found to be locked from the surface to a depth of about 20 km over a width of about 115 km. In these regions, the model parameters are well constrained, thanks to the long and continuous time-series from the permanent GPS as well as DORIS data. Further west, a convergence rate of 13.4±5 mm yr−1, as well as a fault zone, locked over 150 km, are proposed. The slight discrepancy between the geologically estimated deformation rate of 21±1.5 mm yr−1 and the 19±2.5 mm yr−1 geodetic rate in Central and Eastern Nepal, as well as the lower geodetic rate in Western Nepal compared to Eastern Nepal, places bounds on possible temporal variations of the pattern and rate of strain in the period between large earthquakes in this region.


GPS DORIS Interseismic deformation Tectonic plate convergence Himalayas of Nepal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Altamimi Z, Sillard P, Boucher C (2002) ITRF2000: a new release of the international terrestrial reference frame for Earth science applications. J Geophys Res – Solid Earth 107(B10):2214 DOI:10.1029/2001JB000561CrossRefGoogle Scholar
  2. Argus DF, Gordon RG (1991) No-net-rotation model of current plate velocities incorporating plate motion model nuvel-1. Geophys Res Lett 18(11):2039–2042 DOI: 10.1029/91GL01532Google Scholar
  3. Avouac JP (2003) Mountain building, erosion and the seismic cycle in the Nepal Himalaya. In: Dmowska R (eds). Advances in geophysics 46. Elsevier, Amsterdam, pp 1–80 DOI:10.1016/S0065-2687(03)46001-9Google Scholar
  4. Avouac JP, Bollinger L, Lavé J, Cattin R, Flouzat M (2001) Le cycle sismique en Himalaya. C. R. Acad Sci 333:513–529Google Scholar
  5. Banerjee P, Burgmann R (2002) Convergence across the northwest Himalaya from GPS measurements. Geophys Res Lett 29(13) art. no.-1652, DOI:10.1029/2002GL015184Google Scholar
  6. Beutler G, Rothacher M, Schaer S, Springer TA, Kouba J, Neilan RE (1999) The International GPS Service (IGS), An interdisciplinary service in support of earth sciences. Adv Space Res 23(4):631–653CrossRefGoogle Scholar
  7. Beutler, G, Bock H, Brockmann E, Dach R, Fridez P, Gurtner W, Hugentobler U, Ineichen D, Johnson J, Meindl M, Mervart L, Rothacher M, Schaer S, Springer T, Weber R (2001) Bernese GPS Software, Version 4.2. Astronomical Institute, University of Berne, BerneGoogle Scholar
  8. Beutler G, Drewes H, Verdun A (2005) The Integrated Global Geodetic Observing System (IGGOS) viewed from the perspective of history. J Geodyn 40(4–5):414–431 DOI: 10.1016/j.jog.2005.06.005CrossRefGoogle Scholar
  9. Bilham R, Larson K, Freymueller J, Jouanne F, LeFort P, Leturmy P, Mugnier JL, Gamond JF, Glot JP, Martinod J, Chaudury NL, Chitrakar GR, Gautam UP, Koirala BP, Pandey MR, Ranabhat R, Sapkota SN, Shrestha PL, Thakuri MC, Timilsina UR, Tiwari DR, Vidal G, Vigny C, Galy A, deVoogd B (1997) GPS measurements of present-day convergence across the Nepal Himalaya. Nature 386(6620):61–64 DOI: 10.1038/386061a0CrossRefGoogle Scholar
  10. Bilham R, Blume F, Bendick R, Gaur VK (1998) Geodetic constraints on the translation and deformation of India: Implications for future great Himalayan earthquakes. Curr Sci 74(3):213–229Google Scholar
  11. Blewitt G, Bock Y, Kouba J (1995) Constructing the IGS polyhedron by distributed processing. In Proc. of the IGS Workshop ed. By J. Zumberge, IGS Central Bureau, Pasadena, pp 31–36Google Scholar
  12. Bollinger L, Avouac JP, Cattin R, Pandey MR (2004) Stress buildup in the Himalaya. J Geophys Res 109(B11):B11405 DOI: 10.129/2003JB002911CrossRefGoogle Scholar
  13. Boucher C, Altamimi Z, Sillard P (1999) The 1997 International Terrestrial Reference Frame (ITRF97). IERS Techn. Note 27, Paris ObservatoryGoogle Scholar
  14. Boucher C, Altamimi Z, Sillard P, Feissel-Vernier M (2004) The International Terrestrial Reference Frame (ITRF2000). IERS Tech Note 31 Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt am MainGoogle Scholar
  15. Cattin R, Avouac JP (2000) Modeling mountain building and the seismic cycle in the Himalaya of Nepal. J Geophys Res 105(B6):13389–13407 DOI: 10.1029/2000JB900032CrossRefGoogle Scholar
  16. Chen Z, Burchfiel BC, Liu Y, King RW, Royden LH, Tang W, Wang E, Zhao J, Zhang X (2000) Global Positioning System measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J Geophys Res 105:16215–16227 DOI: 10.1029/2000JB900092CrossRefGoogle Scholar
  17. Chen QZ, Freymueller JT, Wang Q, Yang ZQ, Xu CJ, Liu JN (2004) A deforming block model for the present-day tectonics of Tibet. J Geophys Res 109(B1):art. no.-B01403, DOI:10.1029/2002JB002151Google Scholar
  18. Cohen SC (1999) Numerical models of crustal deformation in seismic zones. Adv Geophys (41):133–231CrossRefGoogle Scholar
  19. Crétaux JF, Soudarin L, Cazenave A, Bouille F (1998) Present-day tectonic plate motions and crustal deformations from the DORIS space system. J Geophys Res 103(B12):30167–30181CrossRefGoogle Scholar
  20. DeMets C, Gordon RG, Argus DF, Stein S (1994) Effect of recent revisions to the geomagnetic reversal time scale on current plate motions. Geophys Res Lett 21:2191–2194CrossRefGoogle Scholar
  21. Dong D, Herring TA, King RW (1998) Estimating regional deformation from a combination of space and terrestrial geodetic data. J Geod 72(4):200–214CrossRefGoogle Scholar
  22. Flouzat M, Avouac JP, Durette B, Bollinger L, Heritier T, Jouanne F, Pandey M (2002) Interseismic deformation across the Himalaya of Central Nepal from GPS measurements. EOS Trans AGU 83(47) Fall Meet Suppl F366Google Scholar
  23. Flück P, Hyndman RD, Wang K (1997) Three-dimensional dislocation model for great earthquakes of the Cascadia subduction zone. J Geophys Res 102(B9):20539–20550CrossRefGoogle Scholar
  24. Gahalaut VK, Chander R (1997) On interseismic elevation changes and strain accumulation for great thrust earthquakes in the Nepal Himalaya. Geophys Res Lett 24:1011–1014CrossRefGoogle Scholar
  25. Hauck ML, Nelson D, Brown LD, Zhao W, Ross AR (1998) Crustal structure of the Himalayan orogen at 90° east longitude from Project INDEPTH deep reflection profiles. Tectonics 17:481–500CrossRefGoogle Scholar
  26. Holt WE, Chamot-Rooke N, Le Pichon X, Haines AJ, Shen-Tu B, Ren J (2000) Velocity field in Asia inferred from Quaternary fault slip rates and Global Positioning System observations. J Geophys Res 105:19185– 19209 DOI: 10.1029/2000JB900045CrossRefGoogle Scholar
  27. Jackson M., Bilham R (1994) Constraints on Himalayan deformation inferred from vertical velocity fields in Nepal and Tibet. J Geophys Res 99(B7):13897–13912CrossRefGoogle Scholar
  28. Jouanne F, Mugnier JL, Pandey M, Gamond JF, Le Fort P, Serrurier P, Vigny C, Avouac JP, IDYL-HIM members. (1999) Oblique convergence in Himalaya of western Nepal deduced from preliminary results of GPS measurements. Geophys Res Lett 26(13):1933–1936Google Scholar
  29. Jouanne F, Mugnier JL, Gamond JF, Le Fort P, Pandey MR, Bollinger L, Flouzat M, Avouac JP (2004) Current shortening across the Himalayas of Nepal. Geophys J Int 157(1):1–14 DOI: 10.1111/j.1365-246X.2004.02180.xCrossRefGoogle Scholar
  30. Kreemer C, Haines J, Holt WE, Blewitt G, Lavalee D (2000) On the determination of a global strain rate model. Earth Planets Space 52:765–770Google Scholar
  31. Kumar S, Wesnousky SG, Rockwell TK, Ragona D, Thakur VC, Seitz GG (2001) Earthquake recurrence and rupture dynamics of Himalayan Frontal Thrust, India. Science 294(5550):2328–2331CrossRefPubMedGoogle Scholar
  32. Larson K, Bürgmann R, Bilham R, Freymueller JT (1999) Kinematics of the India-Eurasia collision zone from GPS measurements. J Geophys Res 104(B1):1077–1093CrossRefGoogle Scholar
  33. Lavé J, Avouac JP (2000) Active folding of fluvial terraces across the Siwaliks Hills, Himalayas of central Nepal. J Geophys Res 105(B3):5735–5770CrossRefGoogle Scholar
  34. Lavé J, Yule D, Sapkota S, Basant K, Madden C, Attal M, Pandey R (2005) Evidence for a great medieval earthquake (approximate to 1100 AD) in the Central Himalayas, Nepal. Science 307(5713):1302–1305 DOI:10.1126/science.1104804CrossRefPubMedGoogle Scholar
  35. Melbourne WG (1985) The case for ranging in gps based geodetic system. In: Proceedings of the 1st international symposium on precise positioning with the global positioning system, Clyde Goad (ed), pp 373–386Google Scholar
  36. Mervart L (1995) Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System. Geodätisch-geophysikalische Arbeiten in der Schweiz, Band 53 Schweizerische Geodätische Kommission Institut für Geodäsie und Photogrammetrie Eidg. Technische Hochschule ZürichGoogle Scholar
  37. Molnar P, Pandey MR (1989) Rupture zones of great earthquakes of the Himalayan region. Indian Acad Sci (Earth and Planetary Science) 98(1):61–70Google Scholar
  38. Nelson KD, Zhao WJ, Brown LD, Kuo J, Che JK, Liu XW, Klemperer SL, Makovsky Y, Meissner R, Mechie J, Kind R, Wenzel F, Ni J, Nabelek J, Chen LS, Tan HD, Wei WB, Jones AG, Booker J, Unsworth M, Kidd WSF, Hauck M, Alsdorf D, Ross A, Cogan M, Wu CD, Sandvol E, Edwards M (1996) Partially molten middle crust beneath southern Tibet: Synthesis of project INDEPTH results. Science 274(5293):1684–1688CrossRefPubMedGoogle Scholar
  39. Okada Y (1992) Internal deformation due to shear and tensile fault in a half space. Bull Seismol Soc Am 82:1018–1040Google Scholar
  40. Paul J, Bürgmann R, Gaur VK, Bilham R, Larson KM, Ananda MB, Jade S, Mukal M, Anupama TS, Satyal G, Kumar D (2001) The motion and active deformation of India. Geophys Res Lett 28:647–650 DOI: 10.1029/2000GL011832CrossRefGoogle Scholar
  41. Pandey MR, Tandukar RP, Avouac JP, Lave J, Massot JP (1995) Interseismic Strain Accumulation on the Himalayan Crustal Ramp (Nepal). Geophys Res Lett 22(7):751–754CrossRefGoogle Scholar
  42. Pandey MR, Tandukar RP, Avouac JP, Vergne J, Héritier T (1999) Seismotectonics of Nepal himalayas from a local seismic network. J Asian Earth Sci 17(5–6):703–712CrossRefGoogle Scholar
  43. Perfettini H, Avouac JP (2004) Stress transfer and strain rate variations during the seismic cycle. J Geophys Res 109(B2):B02304 DOI: 10.1029/2003JB002917CrossRefGoogle Scholar
  44. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical Recipes, The Art of Scientific Computing. (Second Edition). Cambridge University Press, Cambridge ISBN 0-521-43108-5Google Scholar
  45. Ray J, Dong D, Altamimi Z (2004) IGS reference frames: status and future improvements. GPS Solutions 8(4):251–266 DOI: 10.1007/s10291-004-0110-xCrossRefGoogle Scholar
  46. Schulte-Pelkum V, Monsalve G, Sheehan A, Pandey MR, Sapkota S, Bilham R, Wu F. (2005) Imaging the Indian subcontinent beneath the Himalaya. Nature 435 (7046):1222–1225 DOI: 10.1038/nature03678CrossRefPubMedGoogle Scholar
  47. Sella GF, Dixon TH, Mao AL (2002) REVEL: A model for recent plate velocities from space geodesy. J Geophys Res 107(B4), DOI: 10.1029/2000JB000033Google Scholar
  48. Shen ZK, Zhao C, Yin A, Li Y, Jackson DD, Fang P, Dong D (2000) Contemporary crustal deformation in east Asia constrained by Global Positioning System measurements. J Geophys Res 105(B3):5721–5734CrossRefGoogle Scholar
  49. Singh SJ, Rani S (1993) Crustal deformation associated with two-dimensional thrust faulting. J Phys Earth 41(2):87–101Google Scholar
  50. Sillard P, Altamimi Z, Boucher C (1998) The ITRF96 realization and its associated velocity field. Geophys Res Lett 25(17):3223–3226CrossRefGoogle Scholar
  51. Socquet A (2003) Accommodation du mouvement relatif entre l’Inde et la Sonde: depuis la Faille de Sagaing jusqu’à la Syntaxe Est Himalayenne. Thèse de doctorat de l’Université Paris XI, 195 ppGoogle Scholar
  52. Soudarin L, Cretaux JF, Cazenave A (1999) Vertical crustal motions from the DORIS space-geodesy system. Geophys Res Lett 26(9):1207–1210CrossRefGoogle Scholar
  53. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683):503–505 DOI: 10.1126/science.1099192CrossRefPubMedGoogle Scholar
  54. Tavernier G, Fagard H, Feissel-Vernier M, Lemoine F, Noll C, Ries J, Soudarin L, Willis P (2005) The International DORIS Service (IDS). Adv Space Res 36(3):333–341 DOI:10.1016/j.asr.2005.03.102CrossRefGoogle Scholar
  55. Vergne J, Cattin R, Avouac JP (2001) On the use of dislocations to model interseismic strain and stress build-up at intracontinental thrust faults. Geophys J Int 147(1):155–162CrossRefGoogle Scholar
  56. Webb F, Zumberge J Eds. (1995) An introduction to the GIPSY/OASIS II, Report JPLM D-11088, Jet Propulsion Laboratory, PasadenaGoogle Scholar
  57. Wessel P, Smith WHF (2001) The generic mapping tools (GMT) version 3.4 technical reference & cookbook. School of Ocean and Earth Science and Technology/National Oceanic and Atmospheric Administration (SOEST/NOAA)Google Scholar
  58. Williams SDP, Bock Y, Fang P, Jamason P, Nikolaidis RM, Prwirodirdjo L, Miller M, Johnson DJ (2004) Error analysis of continuous GPS position time series. J Geophys Res 109(B3):B03412 DOI: 10.1029/2003JB002741CrossRefGoogle Scholar
  59. Willis P, Heflin M (2004) External validation of the GRACE GGM01C gravity field using GPS and DORIS positioning results. Geophys Res Lett 31(13):L13616 DOI: 10.1029/2004GL020038CrossRefGoogle Scholar
  60. Willis P, Ries JC (2005) Defining a DORIS core network for Jason-1 precise orbit determination based on ITRF2000; methods and realization. J Geod 79(6–7):370–378 DOI: 10.1007/s00190-005-0475-9CrossRefGoogle Scholar
  61. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. CR Geoscience 336(9):839–846 DOI:10.1016/j.crte.2004.01.004Google Scholar
  62. Willis P, Berthias JP, Bar-Sever YE (2006) Systematic errors in the Z-geocenter derived using satellite tracking data: A case study from SPOT-4 DORIS data in 1998. J Geod 79(10–11):567–572 DOI:10.1007/s00190-005-0013-9CrossRefGoogle Scholar
  63. Willis P, Boucher C, Fagard H, Altamimi Z (2005b) applications of the DORIS system at the French Institut Geographique National. CR Geoscience 337(7):653–662 DOI:10.1016/j.crte.2005.03.002Google Scholar
  64. Wubbena G (1985) Software Developments for Geodetic Positioning with GPS Using TI 4100 Code and Carrier Measurements. In: Proceedings of the 1st international symposium on precise positioning with the global positioning system, Clyde Goad (ed), pp 403–412Google Scholar
  65. Yoshioka S, Mikumo T, Kostoglodov V, Larson KM, Lowry AR, Singh S (2004) Interplate coupling and a recent aseismic slow slip event in the Guerrero seismic gap of the Mexican subduction zone, as deduced from GPS data inversion using a Bayesian information criterion. Phys Earth Planetary Interiors 146(3–4):513–530 DOI: 10.1016/j.pepi.2004.05.006CrossRefGoogle Scholar
  66. Zhang J, Bock Y, Johnson H, Fang P, Genrich JF, Williams S, Wdowinski S, Behr J (1997) Southern California permanent GPS geodetic array: error analysis of daily position estimates and site velocities. J Geophys Res 102(18):035-18 055, DOI: 10.1029/97JB01380Google Scholar
  67. Zhao W, Nelson KD, project INDEPTH Team (1993) Deep seismic-reflection evidence continental underthrusting beneath southern Tibet. Nature 366(6455):557–559CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Pierre Bettinelli
    • 1
    Email author
  • Jean-Philippe Avouac
    • 2
  • Mireille Flouzat
    • 1
  • François Jouanne
    • 3
  • Laurent Bollinger
    • 1
  • Pascal Willis
    • 4
    • 5
  • Gyani Raja Chitrakar
    • 6
  1. 1.Commissariat à l’Energie AtomiqueLaboratoire Détection et GéophysiqueBruyères-Le-ChâtelFrance
  2. 2.Tectonics ObservatoryCalifornia Institute of TechnologyPasadenaUSA
  3. 3.Laboratoire de Géodynamique des Chaînes AlpinesUniversité de Savoie, Campus scientifiqueLe Bourget du Lac CedexFrance
  4. 4.Direction TechniqueInstitut Géographique NationalSaint-MandeFrance
  5. 5.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  6. 6.Department of Mines and GeologyNational Seismological CenterKathmanduNepal

Personalised recommendations