Journal of Geodesy

, Volume 79, Issue 10–11, pp 573–585 | Cite as

Combination of temporal gravity variations resulting from superconducting gravimeter (SG) recordings, GRACE satellite observations and global hydrology models

  • J. Neumeyer
  • F. Barthelmes
  • O. Dierks
  • F. Flechtner
  • M. Harnisch
  • G. Harnisch
  • J. Hinderer
  • Y. Imanishi
  • C. Kroner
  • B. Meurers
  • S. Petrovic
  • Ch. Reigber
  • R. Schmidt
  • P. Schwintzer
  • H. -P. Sun
  • H. Virtanen
Original Article

Abstract

Gravity recovery and climate experiment (GRACE)-derived temporal gravity variations can be resolved within the μgal (10−8 m/s2) range, if we restrict the spatial resolution to a half-wavelength of about 1,500 km and the temporal resolution to 1 month. For independent validations, a comparison with ground gravity measurements is of fundamental interest. For this purpose, data from selected superconducting gravimeter (SG) stations forming the Global Geodynamics Project (GGP) network are used. For comparison, GRACE and SG data sets are reduced for the same known gravity effects due to Earth and ocean tides, pole tide and atmosphere. In contrast to GRACE, the SG also measures gravity changes due to load-induced height variations, whereas the satellite-derived models do not contain this effect. For a solid spherical harmonic decomposition of the gravity field, this load effect can be modelled using degree-dependent load Love numbers, and this effect is added to the satellite-derived models. After reduction of the known gravity effects from both data sets, the remaining part can mainly be assumed to represent mass changes in terrestrial water storage. Therefore, gravity variations derived from global hydrological models are applied to verify the SG and GRACE results. Conversely, the hydrology models can be checked by gravity variations determined from GRACE and SG observations. Such a comparison shows quite a good agreement between gravity variation derived from SG, GRACE and hydrology models, which lie within their estimated error limits for most of the studied SG locations. It is shown that the SG gravity variations (point measurements) are representative for a large area within the accuracy, if local gravity effects are removed. The individual discrepancies between SG, GRACE and hydrology models may give hints for further investigations of each data series.

Keywords

Superconducting gravimetry Gravity recovery and climate experiment (GRACE) Temporal gravity variations Hydrology models Cross validation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali AH, Zlotnicki V (2003) Quality of wind stress fields measured by the skill of a barotropic ocean model: importance of stability of the marine atmospheric boundary layer. Geophys Res Lett 30(3):1129, doi: 10.1029/2002GL016058CrossRefGoogle Scholar
  2. Boy JP, Gegout P, Hinderer J (2002) Reduction of surface gravity data from global atmospheric pressure loading. Geophys J Int 149:534–545CrossRefGoogle Scholar
  3. Boy JP, Hinderer J (2005) Study of the seasonal gravity signal in superconducting gravimeter data. J Geodyn (accepted)Google Scholar
  4. Boy JP, Hinderer J, Ferhat G (2005) Gravity changes and crustal deformation due to hydrology loading. Geophys Res Abstracts 7:07166Google Scholar
  5. Bettadpur S (2004) UTCSR Level-2 processing standards document. GRACE 327–742, http://isdc.gfz-potsdam.de or http://podaac.jpl.nasa.gov/grace/ Bulletin B http://www.iers.org/iers/products/eop/monthly.htmlGoogle Scholar
  6. Chen JL, Wilson CR, Tapley BD, Ries JC (2004) Low degree gravitational changes from GRACE: validation and interpretation, Geophys Res Lett 31:L22607, doi:10.1029/2004GL021670CrossRefGoogle Scholar
  7. Cheng MK, Shum CK, Tapley BD (1997) Determination of long-term changes in the Earth’s gravity field from satellite laser ranging observations. J Geophys Res 102:22377–22390CrossRefGoogle Scholar
  8. Crossley D, Hinderer J, Casula O, Francis O, Hsu HT, Imanishi Y, Jentzsch G, Kääriäinen J, Merriam J, Meurers B, Neumeyer J, Richter B, Sato D, Shihuya K, van Dam T (1999) Network of superconducting gravimeters benefits a number of disciplines. EOS Trans Am Geoph Union 80(11):125–126Google Scholar
  9. Crossley D, Hinderer J (2002) GGP ground truth for satellite missions. Bull Inf Marees Terrestres 136:10735–10742Google Scholar
  10. Crossley D, Hinderer J, Llubes M, Florsch N (2003) The potential of ground gravity measurements to validate GRACE data. Adv Geosci 1:1–7CrossRefGoogle Scholar
  11. Crossley D, Hinderer J, Boy JP, (2005) Time variation of the European gravity field from superconducting gravimeters. Geophys J Int 161:257–264, doi:10.1111/j.1365–246X.2005.02586.xCrossRefGoogle Scholar
  12. Desai SD (2002) Observing the pole tide with satellite altimetry. J Geophys Res 107 (C11):3186, doi:10.1029/2001JC001224CrossRefGoogle Scholar
  13. Dehant V (1987) Tidal parameters for an inelastic earth. Phys Earth Planet Int 49:97–116CrossRefGoogle Scholar
  14. Dunn C, Bertiger W, Bar-Sever Y, Desai S, Haines B, Kuang D, Franklin G, Harris I, Kruizinga G, Meehan T, Nandi S, Nguyen D, Rogstad T, Brooks Thomas JB, Tien J, Romans L, Watkins M, Wu S-C, Bettadpur S, Kim J (2003) Instrument of GRACE – GPS augments gravity measurements. GPS World 14(2):16–28Google Scholar
  15. Döll P, Kaspar F, Lehner B (2003) A global hydrological model for deriving water availability indicators: model tuning and validation. J Hydrol 270:105–134CrossRefGoogle Scholar
  16. Fan Y, van den Dool H (2004) The CPC global monthly soil moisture data set at 1/2 degree resolution for 1948-present. J Geophys Res 109:D10102, doi:1029/2003JD004345CrossRefGoogle Scholar
  17. Farrell WE (1972) Deformation of the Earth by surface loads. Rev Geophys Space Phys 10:761–797CrossRefGoogle Scholar
  18. Flechtner F (2003a) GFZ level-2 processing standards document. GRACE 327–743, http://isdc.gfz-potsdam.de or http://podaac.jpl.nasa.gov/grace/Google Scholar
  19. Flechtner F (2003b) AOD1B product description document. GRACE Project Documentation. JPL 327–750, Rev 1.0, JPL Pasadena, Ca. http://podaac.jpl.nasa.gov/grace/daac/doc/AOD1B_20031022.pdfGoogle Scholar
  20. Francis O, Mazzega P (1990) Global charts of ocean tide loading effects. J Geophys Res 95:11411–11424CrossRefGoogle Scholar
  21. Goodkind J M (1999) The Superconducting gravimeter. Rev Sci Instrum 70/11:4131–4152CrossRefGoogle Scholar
  22. Han SC, Jekeli C, Shum CK (2004) Time-variable aliasing effects of ocean tides, atmosphere, and continental water mass on monthly mean GRACE gravity field. J Geophys Res 109:B 04403, doi:10.1029/2003/JB002501Google Scholar
  23. Harnisch G, Harnisch M (2002) Seasonal variations of hydrological influences on gravity measurements at Wettzell. Bull D’Inf Marees Terr 137:10849–10861Google Scholar
  24. Heiskanen WA, Moritz H (1967) Physical geodesy. WH Freeman, San FranciscoGoogle Scholar
  25. Hinderer J, Legros H (1989) Elasto – gravitational deformation, relative gravity changes and Earth dynamics. Geophys J Int 97: 481–495CrossRefGoogle Scholar
  26. Huang J, Van den Dool HM, Georgakakos KP (1996) Analysis of model-calculated soil moisture over the United States (1931–1993) and applications to long-range temperature forecasts. J Climate 9:1350–1362CrossRefGoogle Scholar
  27. Khan SA, Hoyer J (2004) Shallow-water tides in Japan from superconducting gravimetry. J Geod 78:245–250CrossRefGoogle Scholar
  28. Kroner C (2001) Hydrological effects on gravity data of the Geodynamic Observatory Moxa. J Geodyn Soc Jpn 47(1):353–358Google Scholar
  29. Kroner C, Jahr T (2005) Hydrological experiments around the superconducting gravimeter at Moxa observatory. J Geodyn (accepted)Google Scholar
  30. Lefevre F, Lyard FH, Le Provost C, Schrama EJO (2002) FES99: a global tide finite element solution assimilating tide gauge and altimetric information. J Atmos Oceanic Technol 19:1345–1356CrossRefGoogle Scholar
  31. Le Provost C, Lyard F, Lefevre F, Roblou L (2002) FES 2002 – A new version of the FES tidal solution series. Abstract Volume Jason-1 Science Working Team Meeting, Biarritz, FranceGoogle Scholar
  32. Lyard F (1998) Long period tides determination from a hydrodynamic and assimilation tidal model. Study Report, GeoForschungsZentrum PotsdamGoogle Scholar
  33. McCarthy D, Petit G (2004) IERS Conventions (2003). IERS Technical Note 32, IERS Central Bureau, Frankfurt a.M., GermanyGoogle Scholar
  34. Meurers B, Van Camp M, Petermans T, Verbeeck K, Vanneste K (2005) Investigation of local atmospheric and hydrological gravity signals in Superconducting Gravimeter time series. Geophys Res Abstracts 7:07463Google Scholar
  35. Merriam J B (1992) Atmospheric pressure and gravity. Geophys J Int 109:488–500CrossRefGoogle Scholar
  36. Milly PCD, Shmakin AB (2002) Global modelling of land water and energy balances Part I: The land dynamics (LaD) model. J Hydrometeorol 3(3):283–299CrossRefGoogle Scholar
  37. Neumeyer J, Schwintzer P, Barthelmes F, Dierks O, Imanishi Y, Kroner C, Meurers B, Sun HP, Virtanen H (2004a) Comparison of superconducting gravimeter and CHAMP satellite derived temporal gravity variations. In: Reigber Ch, Lühr H, Schwintzer P, Wickert J (eds) Earth observations with CHAMP Results from three years in orbit, pp 31–36Google Scholar
  38. Neumeyer J, Hagedoorn J, Leitloff J, Schmidt T (2004b) Gravity reduction with three-dimensional atmospheric pressure data for precise ground gravity measurements. J Geodyn 38:437–450CrossRefGoogle Scholar
  39. Neumeyer J; del Pino J; Dierks O, Pflug H (2004c) Improvement of ocean loading correction on gravity data with additional tide gauge measurements. J Geodyn (accepted)Google Scholar
  40. Pick M, Picha J, Vyskocil V (1973) Theory of the Earth‘s gravity field. Publishing House of the Czechoslovak Academy of Sciences, PragueGoogle Scholar
  41. Reigber Ch, Schmidt R, Flechtner F, König R, Meyer U, Neumayer KH, Schwintzer P, Zhu S Y (2005) An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J Geodyn 39:1–10CrossRefGoogle Scholar
  42. Rosat S, Hinderer J, Crossley D, Boy JP (2004) Performance of superconducting gravimeters from long-period seismology to tides. J Geodyn 38:461–476CrossRefGoogle Scholar
  43. Schmidt R, Flechtner F, Meyer Ul, Reigber Ch, Barthelmes F, Foerste Ch, Stubenvoll R, König R, Neumayer KH, Zhu SY (2005a) Static and time-variable gravity from GRACE Mission Data. In: Rummel R, Reigber Ch, Rothacher M, Boedecker G, Schreiber U, Flury J (eds) Observation of the Earth system from space, Springer, Berlin Heidelberg New York (in preparation)Google Scholar
  44. Schmidt R, Schwintzer P, Flechtner F, Reigber Ch, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2005b) GRACE Observations of Changes in Continental Water Storage. Global and Planetary Change 48/4:259–273Google Scholar
  45. Sun H-P (1995) Static deformation and gravity changes at the Earth’s surface due to the atmospheric pressure. Observatoire Royal des Belgique. Serie Geophysique Hors-Serie, BruxellesGoogle Scholar
  46. Sun H-P, Hsu H-T, Jentzsch G, Xu J-Q (2002) Tidal gravity observations obtained with superconducting gravimeter and its application to geodynamics at Wuhan/China, J Geodyn 33(1–2):187–198CrossRefGoogle Scholar
  47. Tapley BD, Reigber Ch (2001) The GRACE mission: status and future plans. EOS Trans AGU 82 (47), Fall Meet Suppl G41:C-02Google Scholar
  48. Thompson PF, Bettadpur SV, Tapley BD (2004) Impact of short period, non-tidal, temporal mass variability on GRACE gravity anomalies. Geophys Res Lett 31:L06619, doi:10.1029/2003GL019285CrossRefGoogle Scholar
  49. Torge W (1989) Gravimetry. de Gruyter, Berlin, New YorkGoogle Scholar
  50. Vaníček P, Krakiwsky EJ (1982) Geodesy: the Concepts. North -Holland, Amsterdam, New York, OxfordGoogle Scholar
  51. Virtanen H (2001) Hydrological studies at the gravity station Metshovi, Finland. J Geodetic Soc Jpn 47(1):328–333Google Scholar
  52. Wahr J, Molenaar M, Bryan F (1998) Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(12):30205–30229CrossRefGoogle Scholar
  53. Wahr J (1985) Deformation induced by polar motion. J Geophys Res 90(B11):9363–9368CrossRefGoogle Scholar
  54. Wahr J, Swenson S, Zlotnicki V, Velicogna I (2004) Time-variable gravity from GRACE: First results. Geophys Res Lett 31(11):L11501, doi:10.1029/2004GL019779CrossRefGoogle Scholar
  55. Wenzel HG (1996) The nanogal software: data processing package Eterna 3.3. Bull Inf Marees Terrestres 124:9425∼9439Google Scholar
  56. Xu JQ, Sun HP, Yang XF (2004) A study of gravity variations caused by polar motion using superconducting gravimeter data from the GGP network. J Geod 78:201–209CrossRefGoogle Scholar
  57. Zürn W, Wilhelm H (1984) Tides of the Earth. In Landolt-Börnstein, Springer, Berlin Heidelberg New York Tokyo, vol 2, pp 259–299Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. Neumeyer
    • 1
  • F. Barthelmes
    • 1
  • O. Dierks
    • 1
  • F. Flechtner
    • 1
  • M. Harnisch
    • 2
  • G. Harnisch
    • 2
  • J. Hinderer
    • 3
  • Y. Imanishi
    • 4
  • C. Kroner
    • 5
  • B. Meurers
    • 6
  • S. Petrovic
    • 1
  • Ch. Reigber
    • 1
  • R. Schmidt
    • 1
  • P. Schwintzer
    • 1
  • H. -P. Sun
    • 7
  • H. Virtanen
    • 8
  1. 1.Dept.1: Geodesy and Remote SensingGeoForschungsZentrum PotsdamPotsdamGermany
  2. 2.Federal Agency for Cartography and GeodesyNuthetalGermany
  3. 3.Institut de Physique du Globe de StrasbourgStrasbourg CedexFrance
  4. 4.Ocean Research Institute TokyoTokyoJapan
  5. 5.Institute of GeosciencesFriedrich Schiller University of JenaJenaGermany
  6. 6.Institute of Meteorology and GeophysicsUniversity of ViennaWienAustria
  7. 7.Institute of Geodesy and GeophysicsChinese Academy of SciencesWuhanPeople Republic of China
  8. 8.Finnish Geodetic InstituteMasalaFinland

Personalised recommendations