Journal of Geodesy

, Volume 79, Issue 10–11, pp 586–601 | Cite as

‘DEOS_CHAMP-01C_70’: a model of the Earth’s gravity field computed from accelerations of the CHAMP satellite

  • P. Ditmar
  • V. Kuznetsov
  • A. A. van Eck van der Sluijs
  • E. Schrama
  • R. Klees
Original Article

Abstract

Performance of a recently proposed technique for gravity field modeling has been assessed with data from the CHAMP satellite. The modeling technique is a variant of the acceleration approach. It makes use of the satellite accelerations that are derived from the kinematic orbit with the 3-point numerical differentiation scheme. A 322-day data set with 30-s sampling has been used. Based on this, a new gravity field model – DEOS_CHAMP-01C_70 - is derived. The model is complete up to degree and order 70. The geoid height difference between the DEOS_CHAMP-01C_70 and EIGEN-GRACE01S models is 14 cm. This is less than for two other recently published models EIGEN-CHAMP03Sp and ITG-CHAMP01E. Furthermore, we analyze the sensitivity of the model to some empirically determined parameters (regularization parameter and the parameter that controls the frequency-dependent data weighting). We also show that inaccuracies related to non-gravitational accelerations, which are measured by the on-board accelerometer, have a minor influence on the computed gravity field model.

Keywords

Earth’s gravity field Satellite accelerations Acceleration approach CHAMP DEOS_CHAMP-01C_70 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ditmar P, Klees R, Kostenko F (2003) Fast and accurate computation of spherical harmonic coefficients from satellite gravity gradiometry data. J Geod 76:690–705CrossRefGoogle Scholar
  2. Ditmar P, van Eck van~der Sluijs A, Kuznetsov V (2004) Modeling the Earth’s gravity field from precise satellite orbit data: the acceleration approach works! (available as http://earth.esa. int/workshops/goce04/participants/81/paper_accelerations.pdf). In: Proceedings of the 2nd international GOCE user workshop, Frascati (Italy), 8-10 March, 2004. European Space AgencyGoogle Scholar
  3. Ditmar P, van Eck van der Sluijs AA (2004) A technique for Earth’s gravity field modeling on the basis of satellite accelerations. J Geod 78:12–33CrossRefGoogle Scholar
  4. Dziewonski, AM, Anderson DL (1981) Preliminary reference Earth model (PREM). Phys Earth Planet Int 25:297–356CrossRefGoogle Scholar
  5. Fengler MJ, Freeden W, Michel V (2004) The Kaiserslautern multiscale geopotential model SWITCH-03 from orbit perturbations of the satellite CHAMP and its comparison to the models EGM96, UCPH2002_02_0.5, EIGEN-1s, and EIGEN-2. Geophys J Int 157(2):499–514CrossRefGoogle Scholar
  6. Gerlach C, Földvary L, Švehla D, Gruber T, Wermuth M, Sneeuw N, Frommknecht B, Oberndorfer H, Peters T, Rothacher M, Rummel R, Steigenberger P (2003a) A CHAMP-only gravity field model from kinematic orbits using the energy integral. Geophys Res Lett 30(20):2037 doi: 10.1029/2003GL018025CrossRefGoogle Scholar
  7. Gerlach C, Sneeuw N, Visser P, Švehla D (2003b) CHAMP gravity field recovery using the energy balance approach (available as http://www.copernicus.org/EGU/adgeo/2003/1/adg-1-73.pdf). Adv Geosci 1:73–80Google Scholar
  8. Han S-C, Jekeli C, Shum CK (2002) Efficient gravity field recovery using in situ disturbing potential observables from CHAMP. Geophys Res Lett 29(16) 10.129/2002GL015180Google Scholar
  9. Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bureau Stand 49:409–436Google Scholar
  10. Howe E, Stenseng L, Tscherning CC (2003) Analysis of one month of CHAMP state vector and accelerometer data for the recovery of the gravity potential (available as http://www.copernicus.org/EGU/adgeo/2003/1/adg-1-1.pdf). Adv Geosci 1:1–4Google Scholar
  11. Ilk K-H (1984) On the analysis of satellite-to-satellite tracking data. In: Proceedings of the International symposium on space techniques for geodesy. Sopron, Hungary 9–13 July 1984, pp 59–74Google Scholar
  12. Ilk KH, Feuchtinger M, Mayer-Open image in new windowurr T (2003) Gravity field recovery and validation by analysis of short arcs of a satellite-to-satellite tracking experiment as CHAMP and GRACE. In: Proceedings of the IAG symposium G02, IUGG general assembly 2003, Sapporo, JapanGoogle Scholar
  13. Ilk KH, Mayer-Gürr T, Feuchtinger M (2005) Gravity field recovery by analysis of short arcs of CHAMP. In: Reigber C, Open image in new windowuhr H, Schwintzer P, Wickert J (eds). Earth observation with CHAMP, results from three years in orbit. Springer, Berlin Heidelberg New York, pp 127–132Google Scholar
  14. Lambeck K (1988). Geophysical geodesy: the slow deformations of the Earth. Clarendon, OxfordGoogle Scholar
  15. Lemoine FG, Kenyon SC, Factor JK, Trimmer RG, Pavlis NK, Chinn DS, Cox CM, Klosko SM, Luthcke SB, Torrence MH, Wang YM, Williamson RG, Pavlis EC, Rapp RH, Olson TR (1998) The development of the joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) geopotential model EGM96. NASA/TP-1998-206861. NASA GSFC, Greenbelt, MDGoogle Scholar
  16. Mayer-Gurr T, Ilk KH, Eicker A, Feuchtinger M (2005) ITG-CHAMP01: A CHAMP gravitiy field model from short kinematical arcs of a one-year observation period. J Geod 78:462–480CrossRefGoogle Scholar
  17. McCarthy DD, Petit G (2004) IERS Conventions (2003) (IERS Technical Note; 32). Verlag des Bundesamts fOpen image in new window Kartographie und Geodäsie, Frankfurt am MainGoogle Scholar
  18. O’Keefe JA (1957) An application of Jacobi’s integral to the motion of an Earth satellite. The Astronomi J 62(1252):265–266CrossRefGoogle Scholar
  19. Ray RD (1999) A global ocean tide model from TOPEX/POSEIDON altimetry: GOT99.2. NASA technical memorandum 209478Google Scholar
  20. Reigber C (1989) Gravity field recovery from satellite tracking data. In: Sansò F, Rummel R (eds) Theory of satellite geodesy and gravity field determination. Lect notes Earth Sci 25:197–234. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2002) A high-quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys Res Lett 29(14). 10.1029/2002GL015064Google Scholar
  22. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R, Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2003a) Global gravity field recovery using solely GPS tracking and accelerometer data from CHAMP. Space Science Reviews, 108(1-2):55–66CrossRefGoogle Scholar
  23. Reigber C, Balmino G, Schwintzer P, Biancale R, Bode A, Lemoine J-M, König R., Loyer S, Neumayer H, Marty J-C, Barthelmes F, Perosanz F, Zhu SY (2003b) New global gravity field models from selected CHAMP data sets. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic, and atmospheric studies. Springer, Berlin Heidelberg New York, pp 120–127Google Scholar
  24. Reigber C, Bock R, Forste C, Grunwaldt L, Jakowski N, Lühr H, Schwintzer P, Tilgner C (1996) CHAMP phase B executive summary. GFZ, STR96/13, PotsdamGoogle Scholar
  25. Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer P, Barthelmes F, Neumayer K-H, König R, Förste C, Balmino G, Biancale R, Lemoine J-M, Loyer S, Perosanz F (2005a) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Lühr H, Schwintzer P, Wickert J (eds) Earth observation with CHAMP – results from three years in orbit. Springer, Berlin Heidelberg New York, pp 25–30CrossRefGoogle Scholar
  26. Reigber C, Schwintzer P, Neumayer K-H, Barthelmes F, König R, Förste C, Balmino G, Biancale R, Lemoine J-M, Loyer S, Bruinsma S, Perosanz F, Fayard T (2003c) The CHAMP-only Earth gravity field model EIGEN-2. Adv Space Res 31(8):1883–1888CrossRefGoogle Scholar
  27. Reigber C, Schwintzer P, Stubenvoll R, Schmidt R, Flechtner F, Meyer U, König R, Neumayer H, Förste C, Barthelmes F, Zhu SY, Balmino G, Biancale R, Lemoine J-M, Meixner H, Raimondo JC (2005b) A high resolution global gravity field model combining CHAMP and GRACE satellite mission and surface gravity data: EIGEN-CG01C. J Geod (accepted)Google Scholar
  28. Reubelt T, Austen G, Grafarend EW (2003a) Harmonic analysis of the Earth’s gravitational field by means of semi-continuous ephemerides of a low Earth orbiting GPS-tracked satellite. Case study: CHAMP. J Geod 77:257–278Google Scholar
  29. Reubelt T, Austen G, Grafarend EW (2003b) Space gravity spectroscopy – determination of the Earth’s gravitational field by means of Newton interpolated LEO ephemeris. Case studies on dynamic (CHAMP rapid science orbit) and kinematic orbits (available as http://www.copernicus.org/EGU/adgeo/2003/1/adg-1-127.pdf). Adv Geosci 1:127–135CrossRefGoogle Scholar
  30. Schrama E (1986) Estimability of potential coefficients from orbit perturbations. In: Reports of the Departmant of Geodesy, Mathematical and Physical Geodesy 86.1. Delft University of TechnologyGoogle Scholar
  31. Schrama E (1995) Gravity research missions reviewed in light of the indirect ocean tide potential. In: Rapp RH, Nerem RS (eds) In: Proceedings IUGG symposium, BoulderGoogle Scholar
  32. Schuh WD (1996) Tailored numerical solution strategies for the global determination of the Earth’s gravity field. Mitteilungen der geodätischen Institute der Technischen Universität Graz. Folge 81. GrazGoogle Scholar
  33. Sneeuw NJ, Gerlach C, Švehla D, Gruber C (2002) A first attempt at time-variable gravity recovery from CHAMP using the energy balance approach (available as http://olimpia.topo.auth.gr/GG2002/SESSION3/Sneeuw.pdf). In: Proceedings of the 3rd meeting of the international gravity and geoid commission. Thessaloniki, Greece, 26–30 AugustGoogle Scholar
  34. Standish EM (1998) JPL Planetary and Lunar Ephemerides, DE405/LE405. JPL IOM 312.F-98-048Google Scholar
  35. Teunissen PJG (2000) Testing theory: an introduction. Delft University Press, DelftGoogle Scholar
  36. Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. V.H. Winston and Sons, WashingtonGoogle Scholar
  37. van den IJssel J, Visser P, Rodriguez EP (2003) CHAMP precise orbit determination using GPS data. Adv Space Res 31:1889–1895CrossRefGoogle Scholar
  38. Švehla D, Rothacher M (2003) Kinematic precise orbit determination for gravity field determination (available as http://tau.fesg.tu-muenchen.de/~drazen/IUGG03_Svehla.pdf). In: Proceedings of the IUGG General Assembly, Sapporo, Japan, 30 June – 11 July, 2003Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • P. Ditmar
    • 1
  • V. Kuznetsov
    • 1
  • A. A. van Eck van der Sluijs
    • 1
  • E. Schrama
    • 1
  • R. Klees
    • 1
  1. 1.Delft Institute of Earth Observation and Space Systems (DEOS), Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations