Advertisement

Debiasing escalation of commitment: the effectiveness of decision aids to enhance de-escalation

  • Christine R. OhlertEmail author
  • Barbara E. Weißenberger
Original Paper
  • 90 Downloads

Abstract

Decision-maker’s tendency to continue with a failing course of action due to sunk costs is a costly bias and failure of managerial decision-making. It is therefore of great interest to find effective countermeasures that address the sunk cost effect, which is one important driver of people’s escalation of commitment behavior. This paper examines the effectiveness of different types of decision aids that aim to reduce the sunk cost effect. In a series of experiments, we first demonstrate that the sunk cost effect even occurs although new unequivocal information on the project’s prospects suggests to change the course, making this bias a robust decision-making error. Then, the effectiveness of different types of decision aids, i.e., warnings and instructions, is tested for de-escalation purpose. De-escalation was found in dependence of the type of decision aid: Using simple warnings that label sunk costs as such and warn about the sunk cost effect was not effective in reducing people’s tendency to continue a failing course of action; whereas specific instructions that alert the decision-maker how to apply normative decision rules for incremental investment decisions effectively reduced decision-maker’s escalation of commitment. But, our findings also indicate that decision-makers have to rely on the instruction at least to a moderate degree. In this regard, we show that decision aid reliance is determined in a sunk cost situation by decision-maker’s internal feeling that prior resources could have been wasted in case of project termination, as they suffer to admit that prior—sunken—investments cannot be recouped anymore. Consequences for management accounting practice are discussed.

Keywords

Escalation of commitment Sunk cost effect Debiasing De-escalation Decision aids Warnings 

Notes

References

  1. Arkes, H. R., & Blumer, C. (1985). The psychology of sunk cost. Organizational Behavior and Human Decision Processes, 35(1), 124–140.  https://doi.org/10.1016/0749-5978(85)90049-4.CrossRefGoogle Scholar
  2. Arkes, H. R., Dawes, R. M., & Christensen, C. (1986). Factors influencing the use of a decision rule in a probabilistic task. Organizational Behavior and Human Decision Processes, 37(1), 93–110.  https://doi.org/10.1016/0749-5978(86)90046-4.CrossRefGoogle Scholar
  3. Arkes, H. R., Faust, D., Guilmette, T. J., & Hart, K. (1988). Eliminating the hindsight bias. Journal of Applied Psychology, 73(2), 305–307.  https://doi.org/10.1037/0021-9010.73.2.305.CrossRefGoogle Scholar
  4. Arkes, H. R., & Hutzel, L. (2000). The role of probability of success estimates in the sunk cost effect. Journal of Behavioral Decision Making, 13(3), 295–306.  https://doi.org/10.1002/1099-0771(200007/09)13:3%3c295:AID-BDM353%3e3.0.CO;2-6.CrossRefGoogle Scholar
  5. Armor, D. A. (1999). The illusion of objectivity: A bias in the perception of freedom from bias.Google Scholar
  6. Ashton, R. H. (1990). Pressure and performance in accounting decision settings: Paradoxical effects of incentives, feedback, and justification. Journal of Accounting Research, 28, 148–180.  https://doi.org/10.2307/2491253.CrossRefGoogle Scholar
  7. Bateman, T. S. (1986). The escalation of commitment in sequential decision making: Situational and personal moderators and limiting conditions. Decision Sciences, 17(1), 33–49.  https://doi.org/10.1111/j.1540-5915.1986.tb00211.x.CrossRefGoogle Scholar
  8. Biyalogorsky, E., Boulding, W., & Staelin, R. (2006). Stuck in the past: Why managers persist with new product failures. Journal of Marketing, 70(2), 108–121.  https://doi.org/10.1509/jmkg.70.2.108.CrossRefGoogle Scholar
  9. Block, R. A., & Harper, D. R. (1991). Overconfidence in estimation: Testing the anchoring-and-adjustment hypothesis. Organizational Behavior and Human Decision Processes, 49(2), 188–207.  https://doi.org/10.1016/0749-5978(91)90048-X.CrossRefGoogle Scholar
  10. Boehne, D. M., & Paese, P. W. (2000). Deciding whether to complete or terminate an unfinished project: A strong test of the project completion hypothesis. Organizational Behavior and Human Decision Processes, 81(2), 178–194.  https://doi.org/10.1006/obhd.1999.2877.CrossRefGoogle Scholar
  11. Bonner, S. E. (2008). Judgment and decision making in accounting. Upper Saddle River, NJ: Pearson/Prentice Hall.Google Scholar
  12. Bonner, B. L., Baumann, M. R., & Dalal, R. S. (2002). The effects of member expertise on group decision-making and performance. Organizational Behavior and Human Decision Processes, 88(2), 719–736.CrossRefGoogle Scholar
  13. Boulding, W., Morgan, R., & Staelin, R. (1997). Pulling the plug to stop the new product drain. Journal of Marketing Research, 34(1), 164–176.  https://doi.org/10.2307/3152073.CrossRefGoogle Scholar
  14. Bowen, M. G. (1987). The escalation phenomenon reconsidered: Decision dilemmas or decision errors? The Academy of Management Review, 12(1), 52–66.  https://doi.org/10.5465/AMR.1987.4306470.CrossRefGoogle Scholar
  15. Brown, D. L., & Jones, D. R. (1998). Factors that influence reliance on decision aids: A model and an experiment. Journal of Information Systems, 12(2), 75–94.Google Scholar
  16. Butler, S. A., & Ghosh, D. (2015). Individual differences in managerial accounting judgments and decision making. The British Accounting Review, 47(1), 33–45.  https://doi.org/10.1016/j.bar.2014.09.002.CrossRefGoogle Scholar
  17. Cheng, F.-F., & Wu, C.-S. (2010). Debiasing the framing effect: The effect of warning and involvement. Decision Support Systems, 49(3), 328–334.  https://doi.org/10.1016/j.dss.2010.04.002.CrossRefGoogle Scholar
  18. Conlon, D. E., & Garland, H. (1993). The role of project completion information in resource allocation decisions. The Academy of Management Journal, 36(2), 402–413.  https://doi.org/10.2307/256529.CrossRefGoogle Scholar
  19. DeNicolis Bragger, J. L., Bragger, D., Hantula, D. A., & Kirnan, J. (1998). Hyteresis and uncertainty: The effect of uncertainty on delays to exit decisions. Organizational Behavior and Human Decision Processes, 74(3), 229–253.  https://doi.org/10.1006/obhd.1998.2779.CrossRefGoogle Scholar
  20. Duxbury, D. (2012). Sunk costs and sunk benefits: A re-examination of re-investment decisions. The British Accounting Review, 44(3), 144–156.  https://doi.org/10.1016/j.bar.2012.07.004.CrossRefGoogle Scholar
  21. Eining, M. M., & Dorr, P. B. (1991). The impact of expert system usage on experimental learning in an audit setting. Journal of Information Systems, 5(1), 1–16.Google Scholar
  22. Eining, M. M., Jones, D. R., & Loebbecke, J. K. (1997). Reliance on decision aids: An examination of auditors’ assessment of management fraud. Auditing: A Journal of Practice & Theory, 16(2), 1–19.Google Scholar
  23. Epley, N., & Gilovich, T. (2005). When effortful thinking influences judgmental anchoring: Differential effects of forewarning and incentives on self-generated and externally provided anchors. Journal of Behavioral Decision Making, 18(3), 199–212.  https://doi.org/10.1002/bdm.495.CrossRefGoogle Scholar
  24. Fennema, M. G., & Perkins, J. D. (2008). Mental budgeting versus marginal decision making: Training, experience and justification effects on decisions involving sunk costs. Journal of Behavioral Decision Making, 21(3), 225–239.  https://doi.org/10.1002/bdm.585.CrossRefGoogle Scholar
  25. Fischhoff, B. (1977). Perceived informativeness of facts. Journal of Experimental Psychology: Human Perception and Performance, 3(2), 349–358.  https://doi.org/10.1037/0096-1523.CrossRefGoogle Scholar
  26. Fischhoff, B. (1982). Debiasing. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: Heuristics and biases (pp. 422–444). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Garland, H. (1990). Throwing good money after bad: The effect of sunk costs on the decision to escalate commitment to an ongoing project. Journal of Applied Psychology, 75(6), 728–731.CrossRefGoogle Scholar
  28. Garland, H., & Conlon, D. E. (1998). Too close to quit: The role of project completion in maintaining commitment. Journal of Applied Social Psychology, 28(22), 2025–2048.  https://doi.org/10.1111/j.1559-1816.1998.tb01359.x.CrossRefGoogle Scholar
  29. Garland, H., & Newport, S. (1991). Effects of absolute and relative sunk costs on the decision to persist with a course of action. Organizational Behavior and Human Decision Processes, 48(1), 55–69.  https://doi.org/10.1016/0749-5978(91)90005-E.CrossRefGoogle Scholar
  30. Garland, H., Sandefur, C. A., & Rogers, A. C. (1990). De-escalation of commitment in oil exploration: When sunk costs and negative feedback coincide. Journal of Applied Psychology, 75(6), 721–727.CrossRefGoogle Scholar
  31. George, J. F., Duffy, K., & Ahuja, M. (2000). Countering the anchoring and adjustment bias with decision support systems. Decision Support Systems, 29(2), 195–206.  https://doi.org/10.1016/S0167-9236(00)00074-9.CrossRefGoogle Scholar
  32. Ghosh, D. (1997). De-escalation strategies: Some experimental evidence. Behavioral Research in Accounting, 9, 88–112.Google Scholar
  33. Golman, R., Hagmann, D., & Loewenstein, G. (2017). Information avoidance. Journal of Economic Literature, 55(1), 96–135.  https://doi.org/10.1257/jel.20151245.CrossRefGoogle Scholar
  34. Hantula, D. A., & DeNicolis Bragger, J. L. (1999). The effects of feedback equivocality on escalation of commitment: An empirical investigation of decision dilemma theory. Journal of Applied Social Psychology, 29(2), 424–444.  https://doi.org/10.1111/j.1559-1816.1999.tb01395.x.CrossRefGoogle Scholar
  35. Heath, C. (1995). Escalation and de-escalation of commitment in response to sunk costs: The role of budgeting in mental accounting. Organizational Behavior and Human Decision Processes, 62(1), 38–54.  https://doi.org/10.1006/obhd.1995.1029.CrossRefGoogle Scholar
  36. Karlsson, N., Gärling, T., & Bonini, N. (2005). Escalation of commitment with transparent future outcomes. Experimental Psychology, 52(1), 67–73.  https://doi.org/10.1027/1618-3169.52.1.67.CrossRefGoogle Scholar
  37. Kaufmann, L., Michel, A., & Carter, C. R. (2009). Debiasing strategies in supply managament decision-making. Journal of Business Logistics, 30(1), 85–106.  https://doi.org/10.1002/j.2158-1592.2009.tb00100.x.CrossRefGoogle Scholar
  38. Keil, M., & Robey, D. (1999). Turning around troubled software projects: An exploratory study of the deescalation of commitment to failing courses of action. Journal of Management Information Systems, 15(4), 63–87.CrossRefGoogle Scholar
  39. Kelly, T. F., & Milkman, K. L. (2013). Escalation of commitment. In E. Kessler (Ed.), Encyclopedia of management theory (pp. 257–260). Thousand Oaks, CA: SAGE Publications.Google Scholar
  40. Kirk, R. E. (1996). Practical significance: A concept whose time has come. Educational and Psychological Measurement, 56(5), 746–759.  https://doi.org/10.1177/0013164496056005002.CrossRefGoogle Scholar
  41. Larrick, R. P. (2004). Debiasing. In D. J. Koehler & N. Harvey (Eds.), Blackwell handbook of judgment and decision making (pp. 316–337). Oxford: Wiley-Blackwell.CrossRefGoogle Scholar
  42. Laughery, K. R. (2006). Safety communications: Warnings. Applied ergonomics, 37(4), 467–478.  https://doi.org/10.1016/j.apergo.2006.04.020.CrossRefGoogle Scholar
  43. Laughery, K. R., & Wogalter, M. S. (2014). A three-stage model summarizes product warning and environmental sign research. Safety Science, 61, 3–10.  https://doi.org/10.1016/j.ssci.2011.02.012.CrossRefGoogle Scholar
  44. Mahlendorf, M. D. (2008). Verhaltensorientiertes Controlling in der Praxis—Eine am Beispiel verspäteter Projektabbrüche illustrierte Systematik zur Identifikation, Bewertung und Auswahl von Controllingmaßnahmen. Zeitschrift für Controlling & Management (Sonderheft 1), 52, 104–112.  https://doi.org/10.1365/s12176-012-0198-8.CrossRefGoogle Scholar
  45. Messier, W. F. (1995). Research in and development of audit decision aids. In R. H. Ashton & H. Ashton Alison (Eds.), Judgment and decision-making research in accounting and auditing (pp. 207–228). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Moon, H. (2001). Looking forward and looking back: Integrating completion and sunk cost effects within an escalation-of-commitment progress decision. Journal of Applied Psychology, 86(1), 104–113.  https://doi.org/10.1037//0021-9010.86.1.104.CrossRefGoogle Scholar
  47. Moser, K., Wolff, H.-G., & Kraft, A. (2013). The deescalation of commitment: Predecisional accountability and cognitive processes. Journal of Applied Social Psychology, 43(2), 363–376.  https://doi.org/10.1111/j.1559-1816.2012.01005.x.CrossRefGoogle Scholar
  48. Mussweiler, T., Strack, F., & Pfeiffer, T. (2000). Overcoming the inevitable anchoring effect: Considering the opposite compensates for selective accessibility. Personality and Social Psychology Bulletin, 26(9), 1142–1150.  https://doi.org/10.1177/01461672002611010.CrossRefGoogle Scholar
  49. Northcraft, G. B., & Neale, M. A. (1986). Opportunity costs and the framing of resource allocation decisions. Organizational Behavior and Human Decision Processes, 37(3), 348–356.  https://doi.org/10.1016/0749-5978(86)90034-8.CrossRefGoogle Scholar
  50. Rogers, W. A., Lamson, N., & Rousseau, G. K. (2000). Warning research: An integrative perspective. Human Factors: The Journal of the Human Factors and Ergonomics Society, 42(1), 102–139.  https://doi.org/10.1518/001872000779656624.CrossRefGoogle Scholar
  51. Rover, S., Wuerges, A. F. E., Tomazzia, E. C., & Borba, J. A. (2009). Sunk costs effect: Does theoretical knowledge affects students’ decision process? Brazilian Business Review, 6(3), 232–248.  https://doi.org/10.15728/bbr.2009.6.3.2.CrossRefGoogle Scholar
  52. Schall, D. L., Doll, D., & Mohnen, A. (2017). Caution!: Warnings as a useless countermeasure to reduce overconfidence? An experimental evaluation in light of enhanced and dynamic warning designs. Journal of Behavioral Decision Making, 30(2), 347–358.  https://doi.org/10.1002/bdm.1946.CrossRefGoogle Scholar
  53. Schultze, T., Pfeiffer, F., & Schulz-Hardt, S. (2012). Biased information processing in the escalation paradigm: Information search and information evaluation as potential mediators of escalating commitment. The Journal of Applied Psychology, 97(1), 16–32.  https://doi.org/10.1037/a0024739.CrossRefGoogle Scholar
  54. Seow, P.-S. (2011). The effects of decision aid structural restrictiveness on decision-making outcomes. International Journal of Accounting Information Systems, 12(1), 40–56.  https://doi.org/10.1016/j.accinf.2010.03.002.CrossRefGoogle Scholar
  55. Simonson, I., & Staw, B. M. (1992). Deescalation strategies: A comparison of techniques for reducing commitment to losing courses of action. Journal of Applied Psychology, 77(4), 419–426.  https://doi.org/10.1037/0021-9010.77.4.419.CrossRefGoogle Scholar
  56. Sleesman, D. J., Conlon, D. E., McNamara, G., & Miles, J. E. (2012). Cleaning up the big muddy: A meta-analytic review of the determinants of escalation of commitment. Academy of Management Journal, 55(3), 541–562.  https://doi.org/10.5465/amj.2010.0696.CrossRefGoogle Scholar
  57. Smith-Jackson, T. L., & Wogalter, M. S. (2006). Methods and procedures in warning research. In M. S. Wogalter (Ed.), Handbook of warnings (pp. 23–33). Mahwah, NJ: Taylor and Francis.Google Scholar
  58. Staw, B. M. (1976). Knee-deep in the big muddy: A study of escalating commitment to a chosen course of action. Organizational Behavior and Human Performance, 16(1), 27–44.  https://doi.org/10.1016/0030-5073(76)90005-2.CrossRefGoogle Scholar
  59. Staw, B. M., & Ross, J. (1987). Behavior in escalation situations: Antecedents, prototypes and solutions. Research in Organizational Behavior, 9, 39–78.Google Scholar
  60. Steinkühler, D., Mahlendorf, M. D., & Brettel, M. (2014). How self-justification indirectly drives escalation of commitment—A motivational perspective. Schmalenbach Business Review, 66(2), 191–222.CrossRefGoogle Scholar
  61. Strough, J., Mehta, C. M., McFall, J. P., & Schuller, K. L. (2008). Are older adults less subject to the sunk-cost fallacy than younger adults? Psychological Science, 19(7), 650–652.  https://doi.org/10.1111/j.1467-9280.2008.02138.x.CrossRefGoogle Scholar
  62. Tan, H.-T., & Yates, J. F. (1995). Sunk cost effects: The influence of instruction and future return estimates. Organizational Behavior and Human Decision Processes, 63(3), 311–319.  https://doi.org/10.1006/obhd.1995.1082.CrossRefGoogle Scholar
  63. Tan, H.-T., & Yates, J. F. (2002). Financial budgets and escalation effects. Organizational Behavior and Human Decision Processes, 87(2), 300–322.  https://doi.org/10.1006/obhd.2001.2967.CrossRefGoogle Scholar
  64. van Putten, M., Zeelenberg, M., & van Dijk, E. (2010). Who throws good money after bad? Action vs. state orientation moderates the sunk cost fallacy. Judgment and Decision Making, 5(1), 33–36.Google Scholar
  65. Walton, D. (2002). The sunk costs fallacy or argument from waste. Argumentation, 16(4), 473–503.  https://doi.org/10.1023/A:1021108016075.CrossRefGoogle Scholar
  66. Wetzel, C. G., Wilson, T. D., & Kort, J. (1981). The halo effect revisited: Forewarned is not forearmed. Journal of Experimental Social Psychology, 17(4), 427–439.  https://doi.org/10.1016/0022-1031(81)90049-4.CrossRefGoogle Scholar
  67. Wheeler, P., & Murthy, U. (2011). Experimental methods in decision aid research. International Journal of Accounting Information Systems, 12(2), 161–167.  https://doi.org/10.1016/j.accinf.2010.12.004.CrossRefGoogle Scholar
  68. Whitecotton, S. M. (1996). The effects of experience and confidence on decision aid reliance: A causal model. Behavioral Research in Accounting, 8, 194–216.Google Scholar
  69. Wilson, T. D., Houston, C. E., Etling, K. M., & Brekke, N. (1996). A new look at anchoring effects: Basic anchoring and its antecedents. Journal of Experimental Psychology: General, 125(4), 387–402.  https://doi.org/10.1037/0096-3445.125.4.387.CrossRefGoogle Scholar
  70. Zayer, E. (2007). Verspätete Projektabbrüche in F&E: Eine verhaltensorientierte Analyse (1st ed., Schriften des Center for Controlling & Management (CCM), Vol. 25). Wiesbaden: Deutscher Universitäts-Verlag.Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Chair of Accounting, Department of Business Administration and EconomicsHeinrich Heine University DuesseldorfDuesseldorfGermany

Personalised recommendations