Advertisement

Journal of Management Control

, Volume 26, Issue 2–3, pp 131–155 | Cite as

Improving simulation model analysis and communication via design of experiment principles: an example from the simulation-based design of cost accounting systems

  • Sina HockeEmail author
  • Matthias Meyer
  • Iris Lorscheid
Original Paper
  • 496 Downloads

Abstract

Simulation offers management accounting research many benefits, such as the ability to model and to experiment with complex and large systems. At the same time, the acceptance of this method is hampered by a feeling of complexity often associated with simulation models and their behavior, as well as with challenges in communicating the models’ results. This study shows how these challenges can be addressed via the systematic use of design of experiment (DOE) principles. The DOE process framework is applied to a simulation model of a cost accounting system that is used to quantitatively evaluate two different methods for the allocation of service costs. As a result, we not only demonstrate the potential and benefits of simulation in the field of management accounting, but also show how DOE principles can help to improve understandings of simulation model behavior and the communication of simulation results.

Keywords

Cost allocation Data analysis Design of experiments Management accounting Simulation Standards 

JEL Classification

C90 C63 M41 

References

  1. Antony, J. (2003). Design of experiments for engineers and scientists. Amsterdam: Butterworth-Heinemann.Google Scholar
  2. Axelrod, R. (1997). Advancing the art of simulation in the social sciences. In R. Conte, R. Hegselmann, & P. Terna (Eds.), Simulating social phenomena (pp. 21–40). Berlin: Springer.CrossRefGoogle Scholar
  3. Balakrishnan, R., Hansen, S., & Labro, E. (2011). Evaluating heuristics used when designing product costing systems. Management Science, 57, 520–541. doi: 10.1287/mnsc.1100.1293.CrossRefGoogle Scholar
  4. Balakrishnan, R., & Penno, M. (2014). Causality in the context of analytical models and numerical experiments. Accounting, Organizations and Society, 39, 531–534.CrossRefGoogle Scholar
  5. Balakrishnan, N., Render, B., & Stair, R. M. (2007). Managerial decision modeling with spreadsheets (2nd ed.). Upper Saddle River: Pearson/Prentice Hall.Google Scholar
  6. Balakrishnan, R., & Sivaramakrishnan, K. (2002). A critical overview of the use of full-cost data for planning and pricing. Journal of Management Accounting Research, 14, 3–31.CrossRefGoogle Scholar
  7. Barth, R., Meyer, M., & Spitzner, J. (2012). Typical pitfalls of simulation modelling—lessons learned from armed forces and business. Journal of Artificial Societies and Social Simulation, 15(2), 5.Google Scholar
  8. Becker, J., Niehaves, B., & Klose, K. (2005). A framework for epistemological perspectives on simulation. Journal of Artificial Societies and Social Simulation, 8(4), 1.Google Scholar
  9. Box, G. E. P., Hunterm, S. J., & Hunter, W. G. (2005). Statistics for experimenters: design, innovation, and discovery. Hoboken: Wiley-Interscience.Google Scholar
  10. Cooper, R., & Kaplan, R. S. (1999). The design of cost management systems: text and cases (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  11. Davidsson, P. (2002). Agent based social simulation: a computer science view. Journal of Artificial Societies and Social Simulation, 5(1), 7.Google Scholar
  12. Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. (2007). Developing theory through simulation methods. Academy of Management Review, 32, 480–499.CrossRefGoogle Scholar
  13. Eason, R., Rosenberger, R., Kokalis, T., Selinger, E., & Grim, P. (2007). What kind of science is simulation? Journal of Experimental & Theoretical Artificial Intelligence, 19, 19–28.CrossRefGoogle Scholar
  14. Edmonds, T. P., Edmonds, C. T., Tsay, B.-Y., & Olds, P. R. (2014). Fundamental managerial accounting concepts (7th ed.). New York: McGraw-Hill Irwin.Google Scholar
  15. Frahm, M. (2011). Beschreibung von komplexen Projektstrukturen. PMaktuell, 2, 22–27.Google Scholar
  16. Garrison, R. H., Noreen, E. W., & Brewer, P. C. (2012). Managerial accounting (14th ed.). New York: McGraw-Hill/Irwin.Google Scholar
  17. Gilbert, N. (2008). Agent-based models. London: SAGE.Google Scholar
  18. Gilbert, N., & Troitzsch, K. G. (2005). Simulation for the social scientist (2nd ed.). Berkshire: Open University Press.Google Scholar
  19. Grimm, V., et al. (2006). A standard protocol for describing individual-based and agent-based models. Ecological Modelling, 198, 115–126. doi: 10.1016/j.ecolmodel.2006.04.023.CrossRefGoogle Scholar
  20. Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., & Railsback, S. F. (2010). The ODD protocol: a review and first update. Ecological Modelling, 221, 2760–2768.CrossRefGoogle Scholar
  21. Grisar, C., & Meyer, M. (forthcoming). Use of simulation in controlling research: a systematic literature review for german-speaking countries.Google Scholar
  22. Hansen, D. R., & Mowen, M. M. (2006). Cost management: accounting and control (5th ed.). Mason: Thomson/South-Western.Google Scholar
  23. Harrison, J. R., Carroll, G. R., & Carley, K. M. (2007). Simulation modeling in organizational and management research. Academy of Management Review, 32, 1229–1245.CrossRefGoogle Scholar
  24. Hendricks, W. A., & Robey, K. W. (1936). The sampling distribution of the coefficient of variation. The Annals of Mathematical Statistics, 7, 129–132.CrossRefGoogle Scholar
  25. Horngren, C. T., Bhimani, A., Datar, S. M., & Foster, G. (2005). Management and cost accounting (3rd ed.). Edinburgh: Pearson Education Limited.Google Scholar
  26. Horngren, C. T., Datar, S. M., & Foster, G. (2006). Cost accounting: a managerial emphasis (12th ed.). Upper Saddle River: Pearson Prentice Hall.Google Scholar
  27. Horngren, C. T., Datar, S. M., & Rajan, M. V. (2014). Cost accounting: a managerial emphasis (15th ed.). Upper Saddle River: Pearson/Prentice Hall.Google Scholar
  28. Jacobs, F., & Marshall, R. (1999). Accuracy of service cost allocation. The Journal of Cost Analysis & Management, 1, 45–57.CrossRefGoogle Scholar
  29. Keilus, M., & Kramer, D. (2006). Rechnungswesen und Controlling im regionalen Umfeld Trier: Empirische Ergebnisse zum Stand und zu Entwicklungstendenzen. Fachhochschule Trier Arbeitsbericht Nr. 2.Google Scholar
  30. Kleijnen, J. P. C., Sanchez, S. M., Lucas, T. W., & Cioppa, T. M. (2005). A user’s guide to the brave new world of designing simulation experiments. INFORMS Journal on Computing, 17, 263–289. doi: 10.1287/ijoc.1050.0136.CrossRefGoogle Scholar
  31. Klingert, F. M. A., & Meyer, M. (2012). Effectively combining experimental economics and multi-agent simulation: suggestions for a procedural integration with an example from prediction markets research. Computational and Mathematical Organization Theory, 18, 63–90.CrossRefGoogle Scholar
  32. Labro, E. (2015). Using simulation methods in accounting research. Journal of Management Control Special Issue on Simulation in Management Accounting Research (forthcoming).Google Scholar
  33. Labro, E., & Vanhoucke, M. (2007). A simulation analysis of interactions among errors in costing systems. The Accounting Review, 82, 939–962.CrossRefGoogle Scholar
  34. Labro, E., & Vanhoucke, M. (2008). Diversity in resource consumption pattern and robustness of costing systems to errors. Management Science, 54, 1715–1730.CrossRefGoogle Scholar
  35. Law, A. M. (2007). Simulation modelling and analysis (4th ed.). Boston: McGraw-Hill.Google Scholar
  36. Leitner, S. (2014). A simulation analysis of interactions among intended biases in costing systems and their effects on the accuracy of decision-influencing information. Central European Journal of Operations Research, 22, 113–138. doi: 10.1007/s10100-012-0275-2.CrossRefGoogle Scholar
  37. Lorscheid, I. (2014). Learning agents for mechanism design analysis. Hamburg: Dissertation, Hamburg University of Technology.Google Scholar
  38. Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the “black box” of simulations: Increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18, 22–62.CrossRefGoogle Scholar
  39. Manuj, I., Mentzer, J. T., & Bowers, M. R. (2009). Improving the rigor of discrete-event simulation in logistics and supply chain research. International Journal of Physical Distribution & Logistics Management, 39, 172–201.CrossRefGoogle Scholar
  40. Martensson, A., Martensson, P. (2007). Extending rigor and relevance: towards credible, contributory and communicable research. In: ECIS Proceedings.Google Scholar
  41. Meyer, M., Lorscheid, I., & Troitzsch, K. G. (2009). The development of social simulation as reflected in the first ten years of JASSS: a citation and co-citation analysis. Journal of Artificial Societies and Social Simulation 12.Google Scholar
  42. Montgomery, D. C. (2008). Design and analysis of experiments (7th ed.). Hoboken: Wiley.Google Scholar
  43. Müller, B., et al. (2013). Describing human decisions in agent-based models—ODD \(+\) D, an extension of the ODD protocol. Environmental Modelling & Software, 48, 37–48. doi: 10.1016/j.envsoft.2013.06.003.CrossRefGoogle Scholar
  44. Railsback, S. S., & Grimm, V. (2012). Agent-based and individual-based modelling: a practical introduction. New Jersey: Princeton University Press.Google Scholar
  45. Reiss, J. (2011). A plea for (good) simulations: nudging economics towards an experimental science. Simulation & Gaming, 42, 243–264.CrossRefGoogle Scholar
  46. Richiardi, M., Leombruni, R., Saam, N. J., & Sonnessa, M. (2006). A common protocol for agent-based social simulation. Journal of Artificial Societies and Social Simulation 9.Google Scholar
  47. Robinson, S. (2004). Simulation: the practice of model development and use. Chichester: Wiley.Google Scholar
  48. Rubinstein, R. Y., & Kroese, D. P. (2008). Simulation and the monte carlo method. Wiley series in probability and statistics (2nd ed.). Hoboken: Wiley.Google Scholar
  49. Stinson, J. B. (2002). Cost allocation—from the simple to the sublime. Management Accounting Quarterly, 4, 1–10.Google Scholar
  50. Wall, F. (2014). Agent-based modeling in managerial science: an illustrative survey and study. Review of Managerial Science 1–59.Google Scholar
  51. Wouters, M., Selto, F., Hilton, R., & Maher, M. (2012). Cost management: strategies for business decisions. Berkshire: McGraw-Hill Higher Education.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Hamburg University of TechnologyHamburgGermany

Personalised recommendations