Journal of Management Control

, Volume 26, Issue 2–3, pp 249–273 | Cite as

Use of Monte Carlo simulation: an empirical study of German, Austrian and Swiss controlling departments

Original Paper

Abstract

This paper addresses current and future aspects of the use of Monte Carlo simulation in controlling departments and examines context as well as company-internal factors that may drive the intensity of its usage. To this end, we conducted an empirical survey that was completed by 445 participants from Germany, Austria and Switzerland. The results suggest a rather low adoption rate of Monte Carlo simulation in controlling, but at the same time, the quality of knowledge concerning Monte Carlo simulation within the companies is much higher. In addition, we identify a strong increase in the use of Monte Carlo simulation very recently, and its use is expected to increase threefold within the next 5 years. Furthermore, regression analyses indicate that the use of Monte Carlo simulation is mainly driven by company-internal factors such as its perceived relevance and years of usage. Contrary to our expectations, context factors such as perceived environmental uncertainty do not explain usage, and only company size and industry sector have significant effects.

Keywords

Controlling Monte Carlo simulation Survey  Perceived environmental uncertainty Use 

JEL Classification

C60 M41 

Notes

Acknowledgments

An earlier version of the paper benefited from discussions at the ACMAR in Vallendar. We would like to thank Prof. Dr. Dr. h.c. Jürgen Weber and the team of the WHU-Controller Panel for the opportunity to integrate our questions in the annual WHU-Controller Panel.

References

  1. Andrés, P., Fuente, G., & San Martín, P. (2015). Capital budgeting practices in Spain. Business Research Quarterly, 18, 37–56.CrossRefGoogle Scholar
  2. Barth, R., Meyer, M., & Spitzner, J. (2012). Typical pitfalls of simulation modeling: Lessons learned from armed forces and business. Journal of Artificial Societies and Social Simulation, 15(2). http://jasss.soc.surrey.ac.uk/15/2/5.html
  3. Brink, A. (1989). Der Einsatz der Simulationstechnik in der Betriebswirtschaft. Das Wirtschaftsstudium, 18(12), 679–685.Google Scholar
  4. Charnes, J. M. (2007). Financial modeling with crystal ball and excel. Hoboken: Wiley.Google Scholar
  5. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  6. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.CrossRefGoogle Scholar
  7. Davis, F., Bagozzi, P., & Warshaw, P. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982–1003.CrossRefGoogle Scholar
  8. Davis, J. P., Eisenhardt, K. M., & Bingham, C. B. (2007). Developing theory through simulation methods. Academy of Management Review, 32(2), 480–499.CrossRefGoogle Scholar
  9. Evans, J. R., & Olson, D. L. (2002). Introduction to simulation and risk analysis. Upper Saddle River: Prentice Hall.Google Scholar
  10. Frezatti, F., de Bido, D., Da Cruz, A. P. C., Baroso, M. F. G., & de Camargo Machado, M. J. (2013). Investment decisions on long-term assets: Integrating strategic and financial perspectives. European Accounting Review, 22(2), 297–336.CrossRefGoogle Scholar
  11. Friedemann, D. (2004). Integrierte Unternehmensplanung: eine Utopie für den Mittelstand? Zeitschrift für Controlling und Management, 48(1), 11–14.CrossRefGoogle Scholar
  12. Gilbert, G. N., & Troitzsch, K. G. (2005). Simulation for the social scientist (2nd ed.). Maidenhead: Open University Press.Google Scholar
  13. Gleißner, W., & Grundmann, T. (2003). Stochastische Planung: auf dem Weg zu einem chancen- und risikoorientierten Controlling. Controlling, 47(9), 459–466.CrossRefGoogle Scholar
  14. Graham, J. R., & Harvey, C. R. (2001). The theory and practice of corporate finance: Evidence from the field. Journal of Financial Economics, 60(2), 187–243.CrossRefGoogle Scholar
  15. Grisar, C., & Meyer, M (forthcoming). Use of simulation in controlling research: A systematic literature review for German-speaking countries.Google Scholar
  16. Günther, T. W. (2013). Conceptualisations of ‘controlling’ in German-speaking countries: analysis and comparison with Anglo-American management control frameworks. Journal of Management Control, 23(1), 269–290.CrossRefGoogle Scholar
  17. Harrison, J. R., Lin, Z., Carroll, G. R., & Carley, K. M. (2007). Simulation modeling in organizational and management research. Academy of Management Review, 32(4), 1229–1245.CrossRefGoogle Scholar
  18. Hess, T., Weber, J., Hirnle, C., Hirsch, B., & Strangfeld, O. (2005). Themenschwerpunkte und Tendenzen in der deutschsprachigen Controllingforschung: eine empirische Analyse. In J. Weber & M. Meyer (Eds.), Internationalisierung des Controllings: Standortbestimmung und Option (pp. 29–47). Wiesbaden: Deutscher Universitäts-Verlag.Google Scholar
  19. Homburg, C., & Klarmann, M. (2003). Empirische Controllingforschung: Anmerkungen aus der Perspektive des Marketing. In J. Weber & B. Hirsch (Eds.), Zur Zukunft der Controllingforschung: Empirie, Schnittstellen und Umsetzung in der Lehre (pp. 65–88). Wiesbaden: Deutscher Universitäts-Verlag.CrossRefGoogle Scholar
  20. Horváth & Partners. (2011). Chancen-und Risikomanagement in wachstumsstarken Zeiten: CFO-Panel http://www2.horvath-partners.com/fileadmin/media/PDF/de/08_Presse/Auswertung%20CFO-Panel-Blitzumfrage_Dez%202010.pdf. Accessed 16 May 2012.
  21. Ittner, C. D., & Larcker, D. F. (2001). Assessing empirical research in managerial accounting: A value-based management perspective. Journal of Accounting and Economics, 32(1/3), 349–410.CrossRefGoogle Scholar
  22. Janke, R., Mahlendorf, M. D., & Weber, J. (2014). An exploratory study of the reciprocal relationship between interactive use of management control systems and perception of negative external crisis effects. Management Accounting Research, 25(4), 251–270.CrossRefGoogle Scholar
  23. Jones, C. S. (1985). An empirical study of the role of management accounting systems following takeover or merger. Accounting, Organizations and Society, 10(2), 177–200.CrossRefGoogle Scholar
  24. Labro, E., & Vanhoucke, M. (2008). Diversity in resource consumption patterns and robustness of costing systems to errors. Management Science, 54(10), 1715–1730.CrossRefGoogle Scholar
  25. Law, A. M. (2007). Simulation modeling and analysis (4th ed.). Boston: McGraw-Hill.Google Scholar
  26. Leombruni, R., & Richiardi, M. (2005). Why are economists sceptical about agent-based simulations? Physica A, 355(1), 103–109.CrossRefGoogle Scholar
  27. Linder, S., & Spitzner, J. (2010). Effektives Risikomanagement in turbulenten Zeiten: wie Sie Szenarien und Simulationen richtig nutzen. Risk, Compliance and Audit, 5, 12–18.Google Scholar
  28. Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the ‘black box’ of simulations: Increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18(1), 22–62.CrossRefGoogle Scholar
  29. Meyer, M., Romeike, F., & Spitzner, J. (2012). Simulationen in der Unternehmenssteuerung: Ergebnisse einer empirischen Studie. Risk, Compliance and Audit, 4, 16–23.Google Scholar
  30. Oracle. (2010). Oracle crystal ball. www.oracle.com/crystalball/index.html. Accessed 12 May 2012.Google Scholar
  31. Palisade. (2012). @Risk: Ein neuer Standard für die Risikoanalyse. http://www.palisade.com/risk/de/. Accessed 12 May 2012
  32. Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.CrossRefGoogle Scholar
  33. Powell, S. G., & Baker, K. R. (2004). The art of modeling with spreadsheets: Management science, spreadsheet engineering, and modeling craft. Hoboken: Wiley.Google Scholar
  34. Pritsch, G. (2000). Realoptionen als Controlling-Instrument: das Beispiel pharmazeutische Forschung und Entwicklung. Wiesbaden: Deutscher Universitäts-Verlag.CrossRefGoogle Scholar
  35. Reiss, J. (2011). A plea for (good) simulations: Nudging economics toward an experimental science. Simulation and Gaming, 42(2), 243–264.CrossRefGoogle Scholar
  36. Speckbacher, G., Bischof, J., & Pfeiffer, T. (2003). A descriptive analysis on the implementation of balanced scorecards in German-speaking countries. Management Accounting Research, 14(4), 361–387.CrossRefGoogle Scholar
  37. Verbeeten, F. H. M. (2006). Do organizations adopt sophisticated capital budgeting practices to deal with uncertainty in the investment decision? A research note. Management Accounting Research, 17(1), 106–120.CrossRefGoogle Scholar
  38. Viemann, K. (2005). Risikoadjustierte Performancemaße. Zeitschrift für Planung und Unternehmenssteuerung, 16(3), 373–380.CrossRefGoogle Scholar
  39. Weber, J. (2008). Aktuelle Controllingpraxis in Deutschland: Ergebnisse einer Benchmarkstudie. Weinheim: Wiley.Google Scholar
  40. Weber, J., Preis, A., & Boettger, U. (2010). Neue Anforderungen an Controller: Ergebnisse aus der Unternehmenspraxis. Weinheim: Wiley.Google Scholar
  41. Weber, J., Rehring, J., & Voussem, L. (2010). Das 4. WHU-Controllerpanel 2010: neue Erkenntnisse aus Berichtswesen und Planung, Vallendar. http://www.whu.edu/uploads/media/Management_Summary_4._WHU-Controllerpanel_2010_01.pdf. Accessed 16 May 2012
  42. Weber, J., Rehring, J., & Voussem, L. (2011). Benchmarks in der Organisation des Controllings, Vallendar. http://www.whu.edu/uploads/media/Ergebnisbericht_Controllingorganisation-2011-Summary_01.pdf. Accessed 16 May 2012
  43. Weber, J., Zubler, S., & Rehring, J. (2009). Controlling im Zeichen der Krise: Einschätzung und Maßnahmen der Controller. Vergleich der Befragungsergebnisse. November 2008/April 2009. Vallendar: WHU.Google Scholar
  44. Weber, J., Kandel, O., Spitzner, J., & Vinkemeier, R. (2005). Unternehmenssteuerung mit Szenarien und Simulationen: wie erfolgreiche Unternehmenslenker von der Zukunft lernen. Weinheim: Wiley.Google Scholar
  45. Weber, J., Hirsch, B., Rambusch, R., Schlüter, H., Sill, F., & Spatz, A. (2006). Controlling 2006: Stand und Perspektiven. Vallendar: WHU.Google Scholar
  46. Weißenberger, B. E. (2007). IFRS für Controller: Einführung, Anwendung, Fallbeispiele. Freiburg: Haufe.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Management Control and AccountingHamburg University of TechnologyHamburgGermany

Personalised recommendations