Advertisement

Zeitschrift für Planung & Unternehmenssteuerung

, Volume 17, Issue 4, pp 365–388 | Cite as

Tourenplanung mittelständischer Speditionsunternehmen in Stückgutkooperationen: Modellierung und heuristische Lösungsverfahren

  • Julia RieckEmail author
  • Jürgen Zimmermann
  • Matthias Glagow
Original Paper

Zusammenfassung

Mittelständische Speditionsunternehmen arbeiten infolge zunehmender Globalisierung sowie gestiegener Kundenerwartungen verstärkt in Stückgutkooperationen zusammen. Für die Kooperationspartner ergeben sich dadurch eine Vielzahl neuer Anforderungen bei der Erstellung eines Tourenplans. Neben der Berücksichtigung heterogener Fahrzeuge und Kundenzeitfenster sowie simultaner Auslieferung und Einsammlung sind z. B. ein mehrfacher Fahrzeugeinsatz vorzusehen und Belegungszeiten der Verladerampen im Depot zu berücksichtigen. Das resultierende Tourenplanungsproblem kann als gemischt-ganzzahliges lineares Programm formuliert und für kleine Probleminstanzen mit dem Solver ILOG CPLEX gelöst werden. Zur Lösung komplexer Instanzen werden in der Praxis häufig Entscheidungsunterstützungssysteme eingesetzt. Verfahren, die in einem solchen System zum Einsatz kommen, müssen in der Lage sein, in kurzer Zeit gute Lösungen zu generieren. Wir stellen dazu ein Sampling Verfahren, ein Lokales Suchverfahren und einen Genetischen Algorithmus vor, die in einer Performance-Analyse miteinander verglichen werden.

Heuristic Algorithms for Vehicle Routing Problems of Less-Than-Truckload Carriers

Summary

As a consequence of globalisation and increasing customer expectations, medium-sized less-than-truckload carriers operate together in cooperations. Each cooperative member faces a multitude of requirements when constructing a low-cost, feasible set of routes. Taking up this problem, we take into consideration among other aspects heterogeneous vehicles, time windows, simultaneous pick-up and delivery at customer locations, as well as the multiple use of vehicles and assignment of vehicles to loading bays at the depot. The resulting vehicle routing problem can be formulated as a mixed-integer linear program, and we use ILOG CPLEX to solve small instances. In order to solve practical problem instances, there is a need for decision support systems. Algorithms which are to be implemented in such a system must be able to quickly generate good solutions. For this reason, we present a sampling procedure, a local search and a genetic algorithm, which we compare in a performance-analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Aarts, E., Lenstra, J.K. (1997): Local Search in Combinatorial Optimization. Wiley, New YorkGoogle Scholar
  2. 2.
    Angelelli, E., Mansini, R. (2002): The Vehicle Routing Problem with Time Windows and Simultaneous Pick-up and Delivery. In: Klose, A., Grazia Speranza, M., Van Wassenhove, L.N. (Hrsg.) Quantitative Approaches to Distribution Logistics and Supply Chain Management, S. 249–267. Springer, BerlinGoogle Scholar
  3. 3.
    Anthonisse, J.M., Lenstra, J.K., Savelsbergh, M.W.P. (1987): Functional Description of CAR, an Interactive System for Computer Aided Routing. Centre for Mathematics and Computer Science, Report OS-R8716, Amsterdam, NiederlandeGoogle Scholar
  4. 4.
    Bierwirth, C., Mattfeld, D.C., Kopfer, H. (1996): On Permutation Representations for Scheduling Problems. In: Voigt, H.-M., Ebeling, W., Rechenberg, I., Schwefel, H.-P. (Hrsg.) Parallel Problem Solving for Nature IV, S. 310–318. Springer, BerlinGoogle Scholar
  5. 5.
    Bodin, L., Golden, B., Assad, A., Ball, M. (1983): Routing and Scheduling of Vehicles and Crews: The State of the Art. Computers and Operations Research 10, 63–211CrossRefGoogle Scholar
  6. 6.
    Bräysy, O., Gendreau, M. (2005a): Vehicle Routing with Time Windows, Part I: Route Construction and Local Search Algorithms. Transportation Science 39, 104–118CrossRefGoogle Scholar
  7. 7.
    Bräysy, O., Gendreau, M. (2005b): Vehicle Routing with Time Windows, Part II: Metaheuristics. Transportation Science 39, 119–139CrossRefGoogle Scholar
  8. 8.
    Christofides, N. (1985): Vehicle Routing. In: Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B. (Hrsg.) The Traveling Salesman Problem, S. 431–448. Wiley, ChichesterGoogle Scholar
  9. 9.
    Clarke, G., Wright, J. (1964): Scheduling of Vehicles from a Central Depot to a Number of Delivery Points. Operations Research 12, 568–581Google Scholar
  10. 10.
    Dantzig, G., Fulkerson, R., Johnson, S. (1954): Solution of a Large-scale Traveling-Salesman Problem. Journal of the Operations Research Society of America 2, 393–410.Google Scholar
  11. 11.
    Dantzig, G.B., Ramser, J.H. (1959): The Truck Dispatching Problem. Management Science 6, 80–91Google Scholar
  12. 12.
    Derigs, U., Döhmer, T. (2005): Router: A Fast and Flexible Local Search Algorithm for a Class of Rich Vehicle Routing Problems. In: Fleuren, H., Den Hertog, D., Kort, P. (Hrsg.) Operations Research Proceedings 2004, S. 144–149. Springer, BerlinGoogle Scholar
  13. 13.
    Desrochers, M., Lenstra, J.K., Savelsbergh, M.W.P. (1990): A Classification Scheme for Vehicle Routing and Scheduling Problems. European Journal of Operational Research 46, 322–332CrossRefGoogle Scholar
  14. 14.
    Desrosiers, J., Soumis, F., Desrochers, M. (1984): Routing with Time Windows by Column Generation. Networks 14, 545–565Google Scholar
  15. 15.
    Dethloff, J. (2001): Vehicle Routing and Reverse Logistics: The Vehicle Routing Problem with Simultaneous Delivery and Pick-up. OR Spektrum 23, 79–96CrossRefGoogle Scholar
  16. 16.
    Diruf, G. (1980): Kundenzeitschranken in der computergestützten Tourenplanung. Zeitschrift für Operations Research 24, B207–B220Google Scholar
  17. 17.
    Drexl, A., Gruenewald, J. (1993): Nonpreemptive Multi-Mode Resource-Constrained Project Scheduling. IIE Transactions 25, 74–81Google Scholar
  18. 18.
    Domschke, W. (1997): Logistik: Rundreisen und Touren. 4. Auflage, Oldenbourg, MünchenGoogle Scholar
  19. 19.
    Funke, B. (2003): Effiziente Lokale Suche für Vehicle Routing und Scheduling Probleme mit Ressourcenbeschränkungen. Dissertation, RTWH AachenGoogle Scholar
  20. 20.
    Funke, B., Grünert, T., Irnich, S. (2005): A Note on Single Alternating Cycle Neighborhoods for the TSP. Journal of Heuristics 11, 135–146CrossRefGoogle Scholar
  21. 21.
    Gendreau, M., Laporte, G., Potvin, J.-Y. (1999): Metaheuristics for the Vehicle Routing Problem. Les Cahiers du Gerad G-98-52, Montréal, KanadaGoogle Scholar
  22. 22.
    Garey, M.R., Johnson, D.S. (1979): Computers and Intractablility: A Guide to the Theory of NP-Completeness. Freeman, New YorkGoogle Scholar
  23. 23.
    Gillett, B., Miller, L. (1974): A Heuristic Algorithm for the Vehicle Dispatch Problem. Operations Research 22, 340–349Google Scholar
  24. 24.
    Glover, F., Kochenberger, G.A. (2003): Handbook of Metaheuristics. Kluwer, BostenGoogle Scholar
  25. 25.
    Gottlieb, J. (2000): Evolutionary Algorithms for Constrained Optimization Problems. Dissertation, TU Clausthal, Shaker, AachenGoogle Scholar
  26. 26.
    Grünert, T., Irnich, S. (2005): Optimierung im Transport, Bände I und II. Shaker, Aachen (Band III erscheint voraussichtlich 2006)Google Scholar
  27. 27.
    Hajri-Gabouj, S., Darmoul, S. (2003): A Hybrid Evolutionary Approach for a Vehicle Routing Problem with Double Time Windows for the Depot and Multiple Use of Vehicles. Studies in Informatics and Control 12, 253–268Google Scholar
  28. 28.
    Hasle, G., Flatberg, T., Kloster, O., Smedsrud, M. (2005): Spider COM Programmers Guide. SINTEF Applied Mathematics, Department of Optimization, NorwegenGoogle Scholar
  29. 29.
    Hoos, H.H., Stützle, T. (2005): Stochastic Local Search: Foundations and Applications. Morgan Kaufmann, San FranciscoGoogle Scholar
  30. 30.
    Karp, R. (1972): Reducibility among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W. (Hrsg.) Complexity of Computer Computations, S. 85–103 Plenum Press, New YorkGoogle Scholar
  31. 31.
    Kolonko, M., Wäsch, D. (2005): Sequential Reservoir Sampling with a Non-Uniform Distribution. Working Paper, TU ClausthalGoogle Scholar
  32. 32.
    Kopfer, H., Pankratz, G., Erkens, E. (1994): Entwicklung eines hybriden Genetischen Algorithmus zur Tourenplanung. OR Spektrum 16, 21–31CrossRefGoogle Scholar
  33. 33.
    Lin, S. (1965): Computer Solutions of the Traveling Salesman Problem. The Bell System Technical Journal 44, 2245–2269Google Scholar
  34. 34.
    Lin, S., Kernighan, B.W. (1973): An Effective Heuristic Algorithm for the Traveling Salesman Problem. Operations Research 21, 498–512Google Scholar
  35. 35.
    Martin, O., Otto, S.W., Felten, E.W. (1991): Large-Step Markov Chains for the Traveling Salesman Problem. Complex Systems 5, 299–326Google Scholar
  36. 36.
    Martin, O., Otto, S.W., Felten, E.W. (1992): Large-Step Markov Chains for the TSP Incorporating Local Search Heuristics. Operations Research Letters 11, 219–224CrossRefGoogle Scholar
  37. 37.
    Mattfeld, D.C., Bierwirth, C. (2004): An Efficient Genetic Algorithm for Job Shop Scheduling with Tardiness Objectives. European Journal of Operational Research 155, 616–630CrossRefGoogle Scholar
  38. 38.
    Michalewicz, Z. (1999): Genetic Algorithms + Data Structures = Evolution Programs. 3. Auflage, Springer, BerlinGoogle Scholar
  39. 39.
    Michalewicz, Z., Fogel, D.B. (2004): How to Solve it: Modern Heuristics. 2. Auflage, Springer, BerlinGoogle Scholar
  40. 40.
    Min, H. (1989): The Multiple Vehicle Routing Problem with Simultaneous Delivery and Pick-up Points. Transportation Research-A 23A, 377–386CrossRefGoogle Scholar
  41. 41.
    Mosheiov, G. (1994): The Travelling Salesman Problem with Pick-up and Delivery. European Journal of Operational Research 79, 299–310CrossRefGoogle Scholar
  42. 42.
    Osman, I.H., Kelly, J.P. (1996): Meta-Heuristics: An Overview. In: Osman, I.H., Kelly, J.P. (Hrsg.) Meta-Heuristics: Theory and Applications, S. 1–21. Kluwer, BostenGoogle Scholar
  43. 43.
    Reese, J., Urban, K.-P. (2005): Tourenplanung bei verbundener Distribution. Zeitschrift für Betriebswirtschaft 4, 81–100Google Scholar
  44. 44.
    Svestka J.A., Huckfeldt, V.E. (1973): Computational Experience with an M-Salesman Traveling Salesman Algorithm. Management Science 19, 790–799CrossRefGoogle Scholar
  45. 45.
    Taillard, E.D., Laporte, G., Gendreau, M. (1996): Vehicle Routing with Multiple Use of Vehicles. Journal of the Operational Research Society 47, 1065–1070CrossRefGoogle Scholar
  46. 46.
    Toth, P., Vigo, D. (2002): An Overview of Vehicle Routing Problems. In: Toth, P., Vigo, D. (Hrsg.) The Vehicle Routing Problem, S. 1–26. Siam, PhiladelphiaGoogle Scholar
  47. 47.
    Van Breedem, A. (2001): Comparing Descent Heuristics and Metaheuristics for the Vehicle Routing Problem. Computers & Operations Research 28, 289–316CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Julia Rieck
    • 1
    Email author
  • Jürgen Zimmermann
    • 1
  • Matthias Glagow
    • 1
  1. 1.Institut für Wirtschaftswissenschaft, Abteilung für BWL und UnternehmensforschungTechnische Universität ClausthalClausthal-ZellerfeldDeutschland

Personalised recommendations