Mathematical Methods of Operations Research

, Volume 81, Issue 1, pp 3–26

Values and coalition configurations

Original Article


In this paper we consider coalition configurations (Albizuri et al. in Games Econ Behav 57:1–17, 2006), that is, families of coalitions not necessarily disjoint whose union is the grand coalition, and give a generalization of the Shapley value (Contributions to the theory of games II, Princeton University Press, Princeton, pp 307–317, 1953) and the Owen value (Essays in mathematical economics and game theory, Springer, Berlin, pp 76–88, 1977) when coalition configurations form. This will be an alternative definition to the one given by Albizuri et al.


Shapley value Owen value Coalition configurations 


  1. Albizuri MJ, Aurrecoechea J, Zarzuelo JM (2006) Configuration values: extensions of the coalitional value. Games Econ Behav 57:1–17CrossRefMATHMathSciNetGoogle Scholar
  2. Albizuri MJ, Aurrecoechea J (2006) Coalition configurations and the Banzhaf index. Soc Choice Welf 26(3):571–596CrossRefMATHMathSciNetGoogle Scholar
  3. Aumann RJ, Dreze JH (1974) Cooperative games with coalition structure. Int J Game Theory 3(4):217–237CrossRefMATHMathSciNetGoogle Scholar
  4. Casajus A (2009) Outside options, component efficiency and stability. Games Econ Behav 65:49–61CrossRefMATHMathSciNetGoogle Scholar
  5. Chae S, Heidhues P (2004) A group bargaining solution. Math Soc Sci 48(1):37–53CrossRefMATHMathSciNetGoogle Scholar
  6. Gómez-Rúa M, Vidal-Puga J (2010) The axiomatic approach to three values in games with coalition structure. Eur J Oper Res 207:795–806CrossRefMATHGoogle Scholar
  7. Gómez-Rúa M, Vidal-Puga J (2014) Bargaining and membership. Top 22(2):800–814CrossRefMATHMathSciNetGoogle Scholar
  8. Hart S, Kurz M (1983) Endogenous formation of coalitions. Econometrica 51:1047–1064CrossRefMATHMathSciNetGoogle Scholar
  9. Hart S, Mas-Colell A (1996) Bargaining and value. Econometrica 64(2):357–380Google Scholar
  10. Kalai E, Samet D (1987) On weighted Shapley values. Int J Game Theory 16:205–222CrossRefMATHMathSciNetGoogle Scholar
  11. Levy A, McLean RP (1989) Weighted coalitional structure values. Games Econ Behav 1:234–249CrossRefMATHMathSciNetGoogle Scholar
  12. Owen G (1977) Values of games with a priori unions. In: Henn R, Moeschlin O (eds) Essays in mathematical economics and game theory. Springer, Berlin, pp 76–88CrossRefGoogle Scholar
  13. Shapley L (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II. Princeton University Press, Princeton, pp 307–317Google Scholar
  14. Vidal-Puga J (2012) The Harsanyi paradox and the “right to talk” in bargaining among coalitions. Math Soc Sci 64(3):214–224CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Facultad de Ciencias Económicas y EmpresarialesBasque Country UniversityBilbaoSpain
  2. 2.Facultade de Ciencias Sociais e da ComunicaciónUniversidade de VigoPontevedraSpain

Personalised recommendations