Mathematical Methods of Operations Research

, Volume 80, Issue 1, pp 47–81 | Cite as

A branch-and-bound algorithm for the coupled task problem

  • József Békési
  • Gábor Galambos
  • Michael N. Jung
  • Marcus Oswald
  • Gerhard Reinelt
Original Article

Abstract

The coupled task problem is to schedule jobs on a single machine where each job consists of two subtasks and where the second subtask has to be started after a given time interval with respect to the first one. The problem has several applications and is NP-hard. In this paper we present a branch-and-bound algorithm for this problem and compare its performance with four integer programming models.

Keywords

Coupled task problem Branch-and-bound Integer programming 

References

  1. Ageev AA, Baburin AE (2007) Approximation algorithms for UET scheduling problems with exact delays. Oper Res Lett 25:533–540CrossRefMathSciNetGoogle Scholar
  2. Ahr D, Békési J, Galambos G, Oswald M, Reinelt G (2004) An exact algorithm for scheduling identical coupled tasks. Math Methods Oper Res 59:193–203CrossRefMATHMathSciNetGoogle Scholar
  3. Blazewicz J, Ecker K, Kis T, Tanas M (2001) A note on the complexity of scheduling coupled tasks on a single processor. J Brazilian Comput Soc 7:23–26CrossRefGoogle Scholar
  4. Elshafei M, Sherali HD, Smith JC (2004) Radar pulse interleaving for multi-target tracking. Nav Res Logist 51(1):72–94CrossRefMATHMathSciNetGoogle Scholar
  5. Li H, Zhao H (2007) Scheduling coupled-tasks on a single machine. In: IEEE symposium on computational intelligence in scheduling SCIS ’07, pp 137–142Google Scholar
  6. Orman AJ, Potts CN (1997) On the complexity of coupled-task scheduling. Discret Appl Math 72:141–154CrossRefMATHMathSciNetGoogle Scholar
  7. Orman AJ, Potts CN, Shahani AK, Moore AR (1996) Scheduling for a multifunction phased array radar system. Eur J Oper Res 90:13–25CrossRefMATHGoogle Scholar
  8. Potts CN, Whitehead JD (2007) Heuristics for a coupled-operation scheduling problem. J Oper Res Soc 58:1375–1388CrossRefMATHGoogle Scholar
  9. Sherali HD, Smith JC (2005) Interleaving two-phased jobs on a single machine with application to radar pulse interleaving. Discret Optim 2:348–361CrossRefMATHMathSciNetGoogle Scholar
  10. Tanas M, Blazewicz J, Ecker K (2007) Polynomial time algorithm for coupled tasks scheduling problem. In: Blazewicz J, Ecker K, Hammer B (eds) ICOLE 2007. Lessach, Austria. Report IfI-07-03, TU Clausthal, pp 76–69Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • József Békési
    • 1
  • Gábor Galambos
    • 1
  • Michael N. Jung
    • 2
  • Marcus Oswald
    • 2
  • Gerhard Reinelt
    • 2
  1. 1.Department of Computer Sciences, Juhász Gyula Teacher Training FacultyUniversity of SzegedSzeged Hungary
  2. 2.Fakultät für Mathematik und Informatik, Institut für InformatikUniversität HeidelbergHeidelbergGermany

Personalised recommendations