Advertisement

Mathematical Methods of Operations Research

, Volume 79, Issue 3, pp 293–326 | Cite as

The stochastic guaranteed service model with recourse for multi-echelon warehouse management

  • Jörg Rambau
  • Konrad Schade
Original Article

Abstract

The guaranteed service model (GSM) computes optimal order-points in multi-echelon inventory control under the assumptions that delivery times can be guaranteed and the demand is bounded. Our new stochastic guaranteed service model (SGSM) with Recourse covers also scenarios that violate these assumptions. Simulation experiments on real-world data of a large German car manufacturer show that policies based on the SGSM dominate GSM-policies.

Keywords

Multi-echelon inventory control Guaranteed service model Stochastic programming Integer linear programming  Real-world application 

Mathematics Subject Classification

MSC 90B05 MSC 90C10 

References

  1. Birge JR, Louveaux F (1997) Introduction to stochastic programming. Springer, New YorkzbMATHGoogle Scholar
  2. Clark A, Scarf H (1960) Optimal policies for a multi-echelon inventory problem. Manag Sci 6:475–490CrossRefGoogle Scholar
  3. Diaz A, Fu MC (2005) Multi-echelon models for repairable items: a review. Document in decision, operations & information technologies research works. University of Maryland. http://hdl.handle.net/1903/2300
  4. Doǧru M, de Kok A, van Houtum G (2005) Optimal control of one-warehouse multi-retailer systems with discrete demand. Working paperGoogle Scholar
  5. Graves S, Willems S (2000) Optimizing strategic safety stock placement in supply chains. Manuf Serv Oper Manag 2(1):68–83Google Scholar
  6. Heitsch H (2007) Stabilität und Approximation stochastischer Optimierungsprobleme. PhD dissertation, Humbold-Universität zu BerlinGoogle Scholar
  7. Heitsch H, Römisch W (2003) Scenario reduction algorithms in stochastic programming. Comput Optim Appl 24:187–206CrossRefzbMATHMathSciNetGoogle Scholar
  8. Henrion R, Küchler C, Römisch W (2008) Discrepancy distances and scenario reduction in two-stage stochastic mixed-integer programming. J Ind Manag Optim 4(2):363–384CrossRefzbMATHMathSciNetGoogle Scholar
  9. Inderfurth K (1991) Safety stock optimization in multi-stage inventory systems. Int J Prod Econ 24(1–2):103–113 (1991). doi: 10.1016/0925-5273(91)90157-O. http://www.sciencedirect.com/science/article/pii/092552739190157O Google Scholar
  10. Inderfurth K (1994) Safety stocks in multistage divergent inventory systems: a survey. Int J Prod Econ 35:321–329CrossRefGoogle Scholar
  11. Schade K (2008) Lagerhaltungsstrategie für mehrstufige Lagerhaltung in der Automobilindustrie. Master’s thesis, Universität BayreuthGoogle Scholar
  12. Magnanti T, Shen ZJ, Shu J, Simchi-Levi D, Teo CP (2006) Inventory placement in acyclic supply chain networks. Oper Res Lett 34:228–238CrossRefMathSciNetGoogle Scholar
  13. Minner S (1997) Dynamic programming algorithms for multi-stage safety stock optimization. OR Spectrum 19:261–271. doi: 10.1007/BF01539783 Google Scholar
  14. Rambau J, Schade K (2010) The stochastic guaranteed service model with recourse for multi-echelon warehouse management. In: Proceedings of the international symposium on combinatorial optimization (ISCO 2010), electronic notes in discrete mathematics, vol 36. Elsevier, pp 783–790Google Scholar
  15. Shapiro A (2003) Monte Carlo sampling methods. In: Ruszczynski A, Shapiro A (eds) Stochastic programming, handbooks in operations research and management science, vol 10. Elsevier, pp 353–425. doi:  10.1016/S0927-0507(03)10006-0
  16. Sherbrooke C (1968) Metric: a multi-echelon technique for recoverable item control. Oper Res 16:122–141CrossRefGoogle Scholar
  17. Simpson (1958) In-process inventory. Oper Res 6:863–873Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Universität BayreuthBayreuthGermany
  2. 2.Volkswagen AGWolfsburgGermany

Personalised recommendations