Advertisement

Mathematical Methods of Operations Research

, Volume 78, Issue 3, pp 361–371 | Cite as

How to divide a cake when people have different metabolism?

  • Luisa Carpente
  • Balbina Casas-Méndez
  • Javier Gozálvez
  • Natividad Llorca
  • Manuel Pulido
  • Joaquín Sánchez-Soriano
Original Article

Abstract

This paper deals with bankruptcy problems in which the players have different utility functions defined in terms of the quantity of allocated resources. We tackle this kind of situation by means of a game without transferable utility and provide two characterizations of the CEA-rule in this context.

Keywords

Bankruptcy problems Utilities Games without transferable utility Allocation rules and axiomatic characterizations 

Mathematics Subject Classification

91A12 

Notes

Acknowledgments

This work has been partially supported by Xunta de Galicia, the Government of Spain and FEDER fund under projects INCITE09-207-064-PR, MTM2008-06778-C02-01, ECO2008-03484-C02-02, MTM2012-36163-C06-04, MTM2011-277731-C03-01, MTM2011-27731-C03-02, MTM2011-23205 and TEC2005-08211-C02, Conselleria d’Educacio of Generalitat Valenciana through Grants ACOMP/2010/102 and ACOMP/2011/129, and by Fundación Séneca de la Región de Murcia through grant 08716/PI/08.

References

  1. Aumann RJ, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud. J Econ Theory 36:195–213MathSciNetCrossRefMATHGoogle Scholar
  2. Curiel I, Maschler M, Tijs SH (1987) Bankruptcy games. Zeitschrift für Oper Res 31:143–159MathSciNetMATHGoogle Scholar
  3. Dagan N (1996) New characterizations of old bankruptcy rules. Soc Choice Welf 13:51–59CrossRefMATHGoogle Scholar
  4. Gozálvez J, Lucas-Estañ MC, Sánchez-Soriano J (2007) User QoS-based multichannel assignment schemes under multimedia traffic conditions. In: Proceedings of the 4th international symposium on wireless communications systems 2007. IEEE, pp 113–117Google Scholar
  5. Greenberg J (1985) Cores of convex games without side payments. Math Oper Res 10:523–525MathSciNetCrossRefMATHGoogle Scholar
  6. Hendrickx R, Borm P, Timmer J (2000) On convexity for NTU-games. CentER Discussion Paper 2000-108. Tilburg University, The NetherlandsGoogle Scholar
  7. Hendrickx R, Borm P, Timmer J (2002) A note on NTU convexity. Int J Game Theory 31:29–37MathSciNetCrossRefMATHGoogle Scholar
  8. Herrero C, Villar A (2001) The three musketeers: four classical solutions to bankruptcy problems. Math Soc Sci 42:307–328MathSciNetCrossRefMATHGoogle Scholar
  9. Lucas-Estañ MC, Gozálvez J, Sánchez-Soriano J, Pulido M, Calabuig D (2007) Multi-channel radio resource distribution policies in heterogeneous traffic scenarios. In: IEEE 66th vehicular technology conference 2007. IEEE, pp 1674–1678Google Scholar
  10. Lucas-Estañ MC, Gozálvez J, Sánchez-Soriano J (2012) Bankruptcy-based radio resource management for multimedia mobile networks. Trans Emerg Telecommun Technolog 23:186–201CrossRefGoogle Scholar
  11. Moulin H (1987) Equal or proportional division of a surplus, and other methods. Int J Game Theory 16:161–186MathSciNetCrossRefMATHGoogle Scholar
  12. O’Neill B (1982) A problem of rights arbitration from the Talmud. Math Soc Sci 2:345–371MathSciNetCrossRefMATHGoogle Scholar
  13. Scarf H (1967) The core of an n-person game. Econometrica 35:50–69MathSciNetCrossRefMATHGoogle Scholar
  14. Sharkey W (1981) Convex games without side payments. Int J Game Theory 10:101–106MathSciNetCrossRefMATHGoogle Scholar
  15. Thomson W (2003) Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: a survey. Math Soc Sci 45:249–297MathSciNetCrossRefMATHGoogle Scholar
  16. Vilkov V (1977) Convex games without side payments. Vestnik Leningradskiva Universitata 7:21–24 (in Russian)MathSciNetGoogle Scholar
  17. Young HP (1988) Distributive justice in taxation. J Econ Theory 44:321–335CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Luisa Carpente
    • 1
  • Balbina Casas-Méndez
    • 2
  • Javier Gozálvez
    • 3
  • Natividad Llorca
    • 4
  • Manuel Pulido
    • 5
  • Joaquín Sánchez-Soriano
    • 4
  1. 1.Departamento de Matemáticas. Facultad de InformáticaUniversidad de CoruñaA CoruñaSpain
  2. 2.Departamento de Estadística e Investigación Operativa. Facultad de MatemáticasUniversidad de Santiago de CompostelaSantiago de CompostelaSpain
  3. 3.Departamento de Física y Arquitectura de ComputadoresUniversidad Miguel HernándezAlicanteSpain
  4. 4.Center of Operations Research (CIO)Universidad Miguel HernándezAlicanteSpain
  5. 5.Departamento de Estadística e Investigación Operativa. Facultad de MatemáticasUniversidad de MurciaMurciaSpain

Personalised recommendations