Mathematical Methods of Operations Research

, Volume 77, Issue 3, pp 393–405 | Cite as

Risk exposure and Lagrange multipliers of nonanticipativity constraints in multistage stochastic problems

  • Gauthier de Maere d’Aertrycke
  • Alexander Shapiro
  • Yves Smeers
Original Article

Abstract

We take advantage of the interpretation of stochastic capacity expansion problems as stochastic equilibrium models for assessing the risk exposure of new equipment in a competitive electricity economy. We develop our analysis on a standard multistage generation capacity expansion problem. We focus on the formulation with nonanticipativity constraints and show that their dual variables can be interpreted as the net margin accruing to plants in the different states of the world. We then propose a procedure to estimate the distribution of the Lagrange multipliers of the nonanticipativity constraints associated with first stage decisions; this gives us the distribution of the discounted cash flow of profitable plants in that stage.

References

  1. Ehrenmann A, Smeers Y (2011) Stochastic equilibrium models for generation capacity expansion. In: Consigli M Bertochi G, Dempster M (eds) Handbook on stochastic optimization methods in finance and energy. Springer, Berlin, pp 273–309CrossRefGoogle Scholar
  2. Eisner MJ, Olsen P (1975) Duality for stochastic programming interpreted as l.p. in \(l_p\)-space. SIAM J Appl Math 28:779–792Google Scholar
  3. Joskow Paul (2007) Competitive electricity markets and investment in new generation capacity. In: Helm D (ed) The new energy paradigm. Oxford University Press, OxfordGoogle Scholar
  4. Morlat G, Bessière F (eds) (1971) Vingt cinq ans d’Economie électrique. Dunod, ParisGoogle Scholar
  5. Pereira MVF, Pinto LMVG (1991) Multi-stage stochastic optimization applied to energy planning. Math Program 52:359–375MathSciNetMATHCrossRefGoogle Scholar
  6. Philpott AB, Guan Z (2008) On the convergence of sampling-based methods for multi-stage stochastic linear programs. Oper Res Lett 36:450–455MathSciNetMATHCrossRefGoogle Scholar
  7. Rockafellar RT, Wets RJ-B (1976) Stochastic convex programming: basic duality. Pac J Math 62:173–195MathSciNetMATHCrossRefGoogle Scholar
  8. Shapiro A (2003) Inference of statistical bounds for multistage stochastic programming problems. Math Methods Oper Res 58:57–68MathSciNetMATHCrossRefGoogle Scholar
  9. Shapiro A (2006) On conplexity of multistage stochastic programs. Oper Res Lett 24:1–8CrossRefGoogle Scholar
  10. Shapiro A (2011a) Analysis of stochastic dual dynamic programming method. Eur J Oper Res 209(1):63–72MATHCrossRefGoogle Scholar
  11. Shapiro A (2011b) Topics in stochastic programming. Universite Catholique de Louvain, CORE lecture seriesGoogle Scholar
  12. Shapiro A, Dentcheva D, Ruszczynski A (2009) Lectures on stochastic programming: modeling and theory. SIAM, Philadelphia, PAGoogle Scholar
  13. Stoft Steven (2002) Power system economics. Wiley-Interscience, LondonCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gauthier de Maere d’Aertrycke
    • 1
  • Alexander Shapiro
    • 2
  • Yves Smeers
    • 3
  1. 1.Fondazione Eni Enrico MatteiMilanItaly
  2. 2.School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Center for Operations Research and Econometrics, Department of Mathematical EngineeringUniversité catholique de LouvainLouvain-La-NeuveBelgium

Personalised recommendations