Mathematical Methods of Operations Research

, Volume 76, Issue 3, pp 343–359 | Cite as

A bankruptcy approach to the core cover

  • A. Estévez-Fernández
  • M. G. Fiestras-JaneiroEmail author
  • M. A. Mosquera
  • E. Sánchez-Rodríguez
Original Article


In this paper we establish a relationship between the core cover of a compromise admissible game and the core of a particular bankruptcy game: the core cover of a compromise admissible game is, indeed, a translation of the set of coalitionally stable allocations captured by an associated bankruptcy game. Moreover, we analyze the combinatorial complexity of the core cover and, consequently, of the core of a compromise stable game.


Cooperative game theory Compromise admissible games Bankruptcy Core cover Complexity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumann R, Maschler M (1985) Game theoretic analysis of a bankruptcy problem from the Talmud. J Econ Theory 36: 195–213MathSciNetzbMATHCrossRefGoogle Scholar
  2. Bondareva ON (1963) Some applications of linear programming methods to the theory of cooperative games. Problemy Kibernitiki 10:119–139 (in Russian)Google Scholar
  3. Curiel I, Maschler M, Tijs S (1987) Bankruptcy games. Math Methods Oper Res 31: A143–A159MathSciNetCrossRefGoogle Scholar
  4. Gillies DB (1953) Some theorems on n-person games. PhD thesis, Princeton University, PrincetonGoogle Scholar
  5. González-Díaz J, Sánchez-Rodríguez E (2008) Cores of convex and strictly convex games. Games Econ Behav 62: 100–105zbMATHCrossRefGoogle Scholar
  6. González-Díaz J, Borm P, Hendrickx R, Quant M (2005) A geometric characterisation of the compromise value. Math Methods Oper Res 61: 483–500MathSciNetzbMATHCrossRefGoogle Scholar
  7. Ichiishi T (1981) Super-modularity: applications to convex games and to the greedy algorithm for LP. J Econ Theory 25: 283–286MathSciNetzbMATHCrossRefGoogle Scholar
  8. Mirás-Calvo MA, Sánchez-Rodríguez E (2008) Juegos cooperativos con utilidad transferible usando MATLAB: TUGlab. Servizo de Publicacións da Universidade de Vigo, VigoGoogle Scholar
  9. O’Neill B (1982) A problem of rights arbitration from the Talmud. Math Soc Sci 2: 345–371MathSciNetzbMATHCrossRefGoogle Scholar
  10. Platz T, Hamers H, Quant M (2011) Characterizing compromise stability of games using larginal vectors. CentER discussion papers 2011-58:195–213, Tilburg University, TilburgGoogle Scholar
  11. Quant M, Borm P, Reijnierse H, van Velzen B (2005) The core cover in relation to the nucleolus and the Weber set. Int J Game Theory 33: 491–503zbMATHCrossRefGoogle Scholar
  12. Quant M, Borm P, Hendrickx R, Zwikker P (2006) Compromise solutions based on bankruptcy. Math Soc Sci 51(3): 247–256MathSciNetzbMATHCrossRefGoogle Scholar
  13. Shapley LS (1953) A value for n-person games. In: Kuhn HW, Tucker AW (eds) Contribution to the theory of games II, vol 28 of Annals of Mathematics Studies. Princeton University Press, Princeton, pp 307–317Google Scholar
  14. Shapley LS (1967) On balanced sets and cores. Naval Res Logist Q 14: 453–460CrossRefGoogle Scholar
  15. Shapley LS (1971) Cores of convex games. Int J Game Theory 1: 11–26MathSciNetzbMATHCrossRefGoogle Scholar
  16. Tijs S, Lipperts F (1982) The hypercube and the core cover of the n-person cooperative games. Cahiers du Centre d’Études de Recherche Opérationnelle 24: 27–37MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Estévez-Fernández
    • 1
  • M. G. Fiestras-Janeiro
    • 2
    Email author
  • M. A. Mosquera
    • 2
  • E. Sánchez-Rodríguez
    • 2
  1. 1.Tinbergen Institute and Department of Econometrics and Operations ResearchVU University AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Statistics and Operations ResearchVigo UniversityVigoSpain

Personalised recommendations