Advertisement

Mixed integer linear models for the optimization of dynamical transport networks

  • Björn Geißler
  • Oliver Kolb
  • Jens Lang
  • Günter Leugering
  • Alexander Martin
  • Antonio Morsi
Original Article

Abstract

We introduce a mixed integer linear modeling approach for the optimization of dynamic transport networks based on the piecewise linearization of nonlinear constraints and we show how to apply this method by two examples, transient gas and water supply network optimization. We state the mixed integer linear programs for both cases and provide numerical evidence for their suitability.

Keywords

Mixed integer linear programming Piecewise linear approximation Gas network optimization Water network optimization 

References

  1. Abreu J, Cabrera E, Izquierdo J, García-Serra J (1999) Flow modeling in pressurized systems revisited. J Hydraul Eng 125: 1154–1169CrossRefGoogle Scholar
  2. Domschke P, Geiß B, Kolb O, Lang J, Martin A, Morsi A (2010) Combination of nonlinear and linear optimization of transient gas networks. INFORMS J comp. doi: 10.1287/ijoc.1100.0429
  3. Ehrhardt K, Steinbach M (2003) Nonlinear optimization in gas networks. Technical report, Konrad- Zuse-Zentrum für Informationstechnik, BerlinGoogle Scholar
  4. Ehrhardt K, Steinbach M (2005) Nonlinear optimization in gas networks. In: Bock HG, Kostina E, Phu HX, Rannacher R (eds) Modeling, simulation and optimization of complex processes. Springer, Berlin, pp 139–148CrossRefGoogle Scholar
  5. Geißler B, Martin A, Morsi A, Schewe L (2010) Using piecewise linear functions for solving MINLPs. To appear in the IMA Volume on MINLPGoogle Scholar
  6. ILOG CPLEX Division (2002) 889 Alder Avenue, Suite 200, Incline Village, NV 89451, USA. Using the CPLEX Callable Library. Information available at url:http://www.cplex.com
  7. Kolb O, Lang J, Bales P (2010) An implicit box scheme for subsonic compressible flow with dissipative source term. Numer Algorithms 53(2):293–307. http://www.springerlink.com/content/p835883ku82m55k2/ Google Scholar
  8. Lee J, Margot J, Margot F (2004) Min-up/ min-down polytopes. Discret Optim 1: 77–85MathSciNetzbMATHCrossRefGoogle Scholar
  9. LeVeque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge Texts in Applied Mathematics, CambridgezbMATHCrossRefGoogle Scholar
  10. Manne AS, Markowitz HM (1957) On the solution of discrete programming problems. Econometrica 25: 84–110MathSciNetzbMATHCrossRefGoogle Scholar
  11. Möller M (2004) Mixed integer models for the optimisation of gas networks in the stationary case. PhD thesis, Darmstadt University of TechnologyGoogle Scholar
  12. Moritz S (2006) A mixed integer approach for the transient case of gas network optimization. PhD thesis, Darmstadt University of TechnologyGoogle Scholar
  13. Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New YorkzbMATHGoogle Scholar
  14. Padberg M (2000) Approximating separable nonlinear functions via mixed zero-one programs. Oper Res Lett 27: 1–5MathSciNetzbMATHCrossRefGoogle Scholar
  15. Sekirnjak E (2000, Nov) Transiente technische optimierung (tto-prototyp). Technical report, PSI AG, BerlinGoogle Scholar
  16. Tomlin JA (1981) A suggested extension of special ordered sets to non-separable non-convex programming problems. Ann Discret Math 11: 359–370MathSciNetzbMATHGoogle Scholar
  17. Wendroff B (1960) On centered difference equations for hyperbolic systems. SIAM J Soc Ind Appl Math 8(3): 549–555MathSciNetzbMATHCrossRefGoogle Scholar
  18. Wilson D (1998) Polyhedral methods for piecewise linear Functions. PhD thesis, University of KentuckyGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Björn Geißler
    • 1
  • Oliver Kolb
    • 2
  • Jens Lang
    • 2
  • Günter Leugering
    • 3
  • Alexander Martin
    • 1
  • Antonio Morsi
    • 1
  1. 1.Department of MathematicsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Department of MathematicsTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Department of MathematicsFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations