Mathematical Methods of Operations Research

, Volume 73, Issue 2, pp 209–234 | Cite as

Constructing a Pareto front approximation for decision making

  • Markus Hartikainen
  • Kaisa Miettinen
  • Margaret M. Wiecek
Article

Abstract

An approach to constructing a Pareto front approximation to computationally expensive multiobjective optimization problems is developed. The approximation is constructed as a sub-complex of a Delaunay triangulation of a finite set of Pareto optimal outcomes to the problem. The approach is based on the concept of inherent nondominance. Rules for checking the inherent nondominance of complexes are developed and applying the rules is demonstrated with examples. The quality of the approximation is quantified with error estimates. Due to its properties, the Pareto front approximation works as a surrogate to the original problem for decision making with interactive methods.

Keywords

Multiobjective optimization Multiple criteria decision making Pareto optimality Interactive decision making Interpolation Delaunay triangulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bezerkin VE, Kamenev GK, Lotov AV (2006) Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier. Comput Math Math Phys 46: 1918–1931MathSciNetCrossRefGoogle Scholar
  2. Boissonnant J-D (1984) Geometric structures for three-dimensional shape representation. ACM Trans Graph 3: 266–286CrossRefGoogle Scholar
  3. Caratheodory C (1913) Bedingt Konvergente Reihen und Konvexe Systeme. J für die reine und angewandte Mathematik 143: 128–175Google Scholar
  4. Coello Coello CA, Van Veldhuizen DA, Lamont GB (2007) Evolutionary algorithms for solving multi-objective problems. Springer, New YorkMATHGoogle Scholar
  5. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, ChichesterMATHGoogle Scholar
  6. Deb K, Thiele L, Laumanns M, Zitzler E (2002) Scalable multi-objective optimization test problems. E-Commer Technol IEEE Int Conf 1: 825–830Google Scholar
  7. Edelsbrunner H (1987) Algorithms in combinatorial geometry. Springer, New YorkMATHGoogle Scholar
  8. Edelsbrunner H (1998) Shape reconstruction with Delaunay complex. In: Lucchesi CL, Moura AV (eds) LATIN’98: theoretical informatics. Springer, Berlin, pp 119–132CrossRefGoogle Scholar
  9. Edelsbrunner H, Shah NR (1994) Triangulating topological spaces. In: SCG ’94: proceedings of the tenth annual symposium on computational geometry. ACM, New York, pp. 285–292Google Scholar
  10. Efremov RV, Kamenev GK (2009) Properties of a method for polyhedral approximation of the feasible criterion set in convex multiobjective problems. Ann Oper Res 166: 271–279MathSciNetMATHCrossRefGoogle Scholar
  11. Eskelinen P, Miettinen K, Klamroth K, Hakanen J (2010) Pareto navigator for interactive nonlinear multiobjective optimization. OR Spectr 23: 211–227MathSciNetCrossRefGoogle Scholar
  12. Fortune S (1997) Voronoi diagrams and Delaunay triangulations. In: Goodman JE, O’Rourke J Handbook of discrete and computational geometry. CRC Press, Boca RatonGoogle Scholar
  13. Fukuda K (2004) Polyhedral computation FAQ. Swiss Federal Institute of Technology, http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
  14. George P-L, Borouchaki H (1998) Delaunay triangulation and meshing: application to finite elements. Hermes, ParisMATHGoogle Scholar
  15. Goel T, Vaidyanathan R, Haftka RT, Shyy W, Queipo NV, Tucker K (2007) Response surface approximation of Pareto optimal front in multi-objective optimization. Comput Methods Appl Mech Eng 196: 879–893MATHCrossRefGoogle Scholar
  16. Goodman, JE, O’Rourke, J (eds) (1997) Discrete and computational geometry. CRC Press, Boca RatonMATHGoogle Scholar
  17. Grünbaum B (1967) Convex polytopes. Interscience Publishers, LondonMATHGoogle Scholar
  18. Hartikainen M, Miettinen K, Wiecek MM (2011) Pareto front approximations for decision making with inherent non-dominance. In: Yong S, Shouyang W, Gang K, Wallenius J (eds) The proceedings of the MCDM2009 conference, lecture notes in economics and mathematical systems. Springer, Berlin. To AppearGoogle Scholar
  19. Hasenjäger M, Sendhoff B (2005) Crawling along the Pareto front: tales from the practice. In: The 2005 IEEE congress on evolutionary computation (IEEE CEC 2005). IEEE Press, Piscataway, NJ, pp 174–181Google Scholar
  20. Keeney RL, Raiffa H (1993) Decisions with multiple objectives. Cambridge University Press, CambridgeGoogle Scholar
  21. Laukkanen T, Tveit T-M, Ojalehto V, Miettinen K, Fogelholm C-J (2010) An interactive multi-objective approach to heat exchanger network synthesis. Comput Chem Eng 34: 943–952CrossRefGoogle Scholar
  22. Lotov AV, Bushenkov VA, Kamenev GA (2004) Interactive decision maps. Kluwer, BostonMATHGoogle Scholar
  23. Luque M, Ruiz F, Miettinen K (2011) Global formulation for interactive multiobjective optimization. OR Spectr. 33: 27–48MATHCrossRefGoogle Scholar
  24. Martin J, Bielza C, Insua DR (2005) Approximating nondominated sets in continuous multiobjective optimization problems. Nav Res Logist 52: 469–480MATHCrossRefGoogle Scholar
  25. McMullen P (1970) The maximum number of faces of a convex polytope. Mathematika 17: 179–184MathSciNetMATHCrossRefGoogle Scholar
  26. Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, BostonMATHGoogle Scholar
  27. Miettinen K, Mäkelä M (1995) Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization 34: 231–246MathSciNetMATHCrossRefGoogle Scholar
  28. Miettinen K, Mäkelä M (2000) Interactive multiobjective optimization system WWW-NIMBUS on the internet. Comput Oper Res 27: 709–723MATHCrossRefGoogle Scholar
  29. Miettinen K, Mäkelä MM (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170: 909–922MATHCrossRefGoogle Scholar
  30. Miettinen K, Ruiz F, Wierzbicki A (2008) Introduction to multiobjective optimization: interactive approaches. In: Branke J, Deb K, Miettinen K, Slowinski R (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 27–57Google Scholar
  31. Monz M (2006) Pareto navigation—interactive multiobjective optimization and its applications in radiotherapy planning. Ph.D. thesis, University of KaiserslauternGoogle Scholar
  32. Rajan VT (1994) Optimality of the Delaunay triangulation in \({\mathbb R^d}\). Discret Comput Geom 12: 189–202MathSciNetMATHCrossRefGoogle Scholar
  33. Ruzika S, Wiecek MM (2005) Approximation methods in multiobjective programming. J Optim Theory Appl 126: 473–501MathSciNetMATHCrossRefGoogle Scholar
  34. Sawaragi Y, Nakayama H, Tanino T (1985) Theory of multiobjective optimization. Academic Press, OrlandoMATHGoogle Scholar
  35. Schandl B, Klamroth K, Wiecek MM (2001) Norm-based approximation in bicriteria programming. Comput Optim Appl 20: 23–42MathSciNetMATHCrossRefGoogle Scholar
  36. Schandl B, Klamroth K, Wiecek MM (2002) Norm-based approximation in multicriteria programming. Comput Math Appl 44: 925–942MathSciNetMATHCrossRefGoogle Scholar
  37. Shenton D, Cendes Z (1985) Three-dimensional finite element mesh generation using Delaunay tesselation. IEEE Trans Magn 21: 2535–2538CrossRefGoogle Scholar
  38. Steuer RE (1986) Multiple criteria optimization: theory, computation and application. Wiley, New YorkMATHGoogle Scholar
  39. Steuer RE (1989) The Tchebycheff procedure of interactive multiple objective programming. In: Karpak B, Zionts S (eds) Multiple criteria decision making and risk analysis using micro computers. Springer, BerlinGoogle Scholar
  40. Steuer RE, Choo E-U (1983) An interactive weighted Tchebycheff procedure for multiple objective programming. Math Program 26: 326–344MathSciNetMATHCrossRefGoogle Scholar
  41. Vegter G (1997) Computational topology. In: Goodman JE, O’Rourke J (eds) Handbook of discrete and computational geometry. CRC Press, Boca Raton, pp 719–742Google Scholar
  42. Wierzbicki A (1986) On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spectr 8: 73–87MathSciNetMATHGoogle Scholar
  43. Yu PL, Zeleny M (1975) The set of all nondominated solutions in linear cases and a multicriteria simplex method. J Math Anal Appl 49: 430–468MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Markus Hartikainen
    • 1
  • Kaisa Miettinen
    • 1
  • Margaret M. Wiecek
    • 1
  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland

Personalised recommendations