Dynamic mean-risk optimization in a binomial model

Original Article


We consider a dynamic mean-risk problem, where the risk constraint is given by the Average Value–at–Risk. As financial market we choose a discrete-time binomial model which allows for explicit solutions. Problems where the risk constraint on the final wealth is replaced by intermediate risk constraints are also considered. The problems are solved with the help of the theory of Markov decision models and a Lagrangian approach.


Average Value–at–Risk Markov decision model Binomial financial market 

Mathematics Subject Classification (2000)

91B30 49L20 93E20 


  1. Bäuerle N, Mundt A (2005) Einführung in die Theorie und Praxis von Risikomaßen. In: Risikomanagement, Kompetenzzentrum Versicherungswissenschaften GmbH, vol 3. VVW, Karlsruhe, pp 67–99Google Scholar
  2. Cuoco D, He H, Issaenko S (2001) Optimal dynamic trading strategies with risk limits. FAME Research Paper Series rp60, International Center for Financial Asset Management and Engineering. Available at http://ideas.repec.org/p/fam/rpseri/rp60.html
  3. Emmer S, Klüppelberg C, Korn R (2001) Optimal portfolios with bounded capital at risk. Math Financ 11(4): 365–384MATHCrossRefGoogle Scholar
  4. Favero G, Vargiolu T (2006) Shortfall risk minimising strategies in the binomial model: characterisation and convergence. Math Methods Oper Res 64(2): 237–253MATHCrossRefMathSciNetGoogle Scholar
  5. Föllmer H, Schied A (2004) Stochastic finance, de Gruyter Studies in Mathematics, vol 27, extended edn. Walter de Gruyter & Co., Berlin An introduction in discrete timeGoogle Scholar
  6. Gabih A, Grecksch W, Wunderlich R (2005) Dynamic portfolio optimization with bounded shortfall risks. Stoch Anal Appl 23(3): 579–594MATHCrossRefMathSciNetGoogle Scholar
  7. Hernández-Lerma O, Lasserre JB (1996) Discrete-time Markov control processes. Applications of Mathematics (New York), vol 30. Springer, New York Basic optimality criteriaGoogle Scholar
  8. Hinderer K (1970) Foundations of non-stationary dynamic programming with discrete time parameter. Lecture Notes in Operations Research and Mathematical Systems, vol 33. Springer, BerlinGoogle Scholar
  9. Leitner J (2006) Optimal control of favorable games with expected loss constraint. SIAM J Control Optim 45(2): 483–495 (electronic)CrossRefMathSciNetGoogle Scholar
  10. Li D, Ng WL (2000) Optimal dynamic portfolio selection: multiperiod mean-variance formulation. Math Finance 10(3): 387–406MATHCrossRefMathSciNetGoogle Scholar
  11. Mundt A (2007) Dynamic risk management with markov decision processes. Ph.D. thesis, Universität Karlsruhe (TH). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007340
  12. Pirvu TA (2007) Portfolio optimization under the value-at-risk constraint. Quant Financ 7(2): 125–136MATHCrossRefMathSciNetGoogle Scholar
  13. Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley Series in probability and mathematical statistics: applied probability and statistics. Wiley-Interscience, New YorkGoogle Scholar
  14. Runggaldier W, Trivellato B, Vargiolu T (2002) A Bayesian adaptive control approach to risk management in a binomial model. In: Seminar on Stochastic Analysis, Random Fields and Applications, III (Ascona, 1999), Progr. Probab, vol 52. Birkhäuser, Basel, pp 243–258Google Scholar
  15. Uryasev S, Rockafellar RT (2002) Conditional value-at-risk for general loss distributions. J Banking Financ 26(7): 1443–1471CrossRefGoogle Scholar
  16. Yiu KFC (2004) Optimal portfolios under a value-at-risk constraint. J Econ Dyn Control 28(7): 1317–1334 (Mathematical programming)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Institut für StochastikUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations