Mathematical Methods of Operations Research

, Volume 69, Issue 1, pp 125–140 | Cite as

Levitin–Polyak well-posedness of vector equilibrium problems

Original Article

Abstract

In this paper, two types of Levitin–Polyak well-posedness of vector equilibrium problems with variable domination structures are investigated. Criteria and characterizations for two types of Levitin–Polyak well-posedness of vector equilibrium problems are shown. Moreover, by virtue of a gap function for vector equilibrium problems, the equivalent relations between the Levitin–Polyak well-posedness for an optimization problem and the Levitin–Polyak well-posedness for a vector equilibrium problem are obtained.

Keywords

Levitin–Polyak well-posedness Vector equilibrium problems Approximating solution sequence Well-set Gap function 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ansari QH (2000) Vector equilibrium problems and vector variational inequalities. In: Giannessi F(eds) Vector variational inequalities and vector equilibria. Mathematical theories. Kluwer, Dordrecht, pp 1–16Google Scholar
  2. Ansari QH, Bazan FF (2003) Generalized vector quasi-equilibrium problems with applications. J Math Anal Appl 277: 246–256MATHCrossRefMathSciNetGoogle Scholar
  3. Aubin JP, Ekeland I (1984) Applied nonlinear analysis. Wiley, New YorkMATHGoogle Scholar
  4. Bianchi M, Hadjisavvas N, Schaible S (1997) Vector equilibrium problems with generalized monotone bifunctions. J Optim Theory Appl 92: 531–546CrossRefMathSciNetGoogle Scholar
  5. Chen GY, Yang XQ (2002) Characterizations of variable domination structures via nonlinear scalarization. J Optim Theory Appl 112(1): 97–110MATHCrossRefMathSciNetGoogle Scholar
  6. Chen GY, Goh CJ, Yang XQ (1999) Vector network equilibrium problems and nonlinear scalarization methods. Math Methods Oper Res 49: 239–253MATHMathSciNetGoogle Scholar
  7. Chen GY, Yang XQ, Yu H (2005) A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J Global Optim 32: 451–466MATHCrossRefMathSciNetGoogle Scholar
  8. Fang YP, Hu R, Huang NJ (2008) Well-posedness for equilibrium problems and for optimization problems with equilibrium constraints. Comput Math Appl 55(1): 89–100CrossRefMathSciNetGoogle Scholar
  9. Ferrentino R (2005) Pointwise well-posedness in vector optimization and variational inequalities. Working paper, Department of Economic Sciences and Statistics, University of Salerno-FiscianoGoogle Scholar
  10. Furi M, Vignoli A (1970) About well-posed optimization problems for functionals in metric spaces. J Optim Theory Appl 5(3): 225–229MATHCrossRefGoogle Scholar
  11. Giannessi F (ed) (2000) Vector variational inequalities and vector equilibria. Mathematical theories. Kluwer, DordrechtMATHGoogle Scholar
  12. Huang XX, Yang XQ (2006) Generalized Levitin–Polyak well-posedness in constrained optimization. SIAM J Optim 17(1): 243–258MATHCrossRefMathSciNetGoogle Scholar
  13. Huang XX, Yang XQ (2007a) Levitin–Polyak well-posedness of constrained vector optimization problems. J Global Optim 37: 287–304MATHCrossRefMathSciNetGoogle Scholar
  14. Huang XX, Yang XQ (2007b) Levitin–Polyak well-posedness in generalized variational inequality problems with functional constraints. J Ind Manag Optim 3(4): 671–684MATHMathSciNetGoogle Scholar
  15. Konsulova AS, Revalski JP (1994) Constrained convex optimization problems well-posedness and stability. Numer Funct Anal Optim 15: 889–907MATHCrossRefMathSciNetGoogle Scholar
  16. Kuratowski C (1958) Topologie. Panstwowe Wydawnicto Naukowa, Warszawa, vol 1Google Scholar
  17. Lai TC, Yao JC (1996) Existence results for VVIP. Appl Math Lett 9(3): 17–19MATHCrossRefMathSciNetGoogle Scholar
  18. Levitin ES, Polyak BT (1966) Convergence of minimizing sequences in conditional extremum problems. Sov Math Dokl 7: 764–767MATHGoogle Scholar
  19. Li SJ, Yan H, Chen GY (2003) Differential and sensitivity properties of gap functions for vector variational inequalities. Math Methods Oper Res 57: 377–391MATHMathSciNetGoogle Scholar
  20. Li SJ, Teo KL, Yang XQ (2005) Generalized vector quasi-equilibrium problems. Math Methods Oper Res 61: 385–397MATHCrossRefMathSciNetGoogle Scholar
  21. Li SJ, Teo KL, Yang XQ, Wu SY (2006) Gap functions and existence of solutions to Generalized vector quasi-equilibrium problems. J Global Optim 34: 427–440MATHCrossRefMathSciNetGoogle Scholar
  22. Mastroeni G (2003) Gap functions for equilibrium problems. J Global Optim 27: 411–426MATHCrossRefMathSciNetGoogle Scholar
  23. Song W (2002) On generalized vector equilibrium problems. Appl Math Lett 12: 53–56Google Scholar
  24. Tykhonov AN (1966) On the stability of the functional optimization problem. USSR Comput Math Math Phys 6: 28–33CrossRefGoogle Scholar
  25. Ward DE, Lee GM (2002) On relations between vector optimization problems and vector variational inequalities. J Optim Theory Appl 113(3): 583–596MATHCrossRefMathSciNetGoogle Scholar
  26. Zolezzi T (1996) Extended well-posedness of optimization problems. J Optim Theory Appl 91(1): 257–266MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.College of Mathematics and SciencesChongqing UniversityChongqingChina

Personalised recommendations