Mathematical Methods of Operations Research

, Volume 67, Issue 1, pp 21–42 | Cite as

Optimizing venture capital investments in a jump diffusion model

  • Erhan Bayraktar
  • Masahiko Egami
Original Article


We study two practical optimization problems in relation to venture capital investments and/or Research and Development (R&D) investments. In the first problem, given the amount of the initial investment and the cash flow structure at the initial public offering (IPO), the venture capitalist wants to maximize overall discounted cash flows after subtracting subsequent investments, which keep the invested company solvent. We describe this problem as a mixture of singular stochastic control and optimal stopping problems. The second problem is concerned with optimal dividend policy. Rather than selling the company at an IPO, the investor may want to harvest technological achievements in the form of dividend when it is appropriate. The optimal control policy in this problem is a mixture of singular and impulse controls.


Venture capital investments R&D IPO Stochastic control Optimal stopping Singular control Impulse control Jump diffusions 

Mathematics Subject Classification (2000)

Primary 49N25 Secondary 60G40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avram F, Palmowski Z and Pistorius M (2007). On the optimal dividend problem for a spectrally negative Lévy processes. Ann Appl Probab 17(1): 156–180 zbMATHCrossRefMathSciNetGoogle Scholar
  2. Bayraktar E, Egami M (2006) A unified treatment of dividend payment problems under fixed cost and implementation delay (Submitted),
  3. Buckley IRC and Korn R (1998). Optimal index tracking under transaction costs and impulse control. Int J Theor Appl Finance 1(3): 315–330 zbMATHCrossRefGoogle Scholar
  4. Dassios A and Embrechts P (1989). Martingales and insurance risk. Comm Stat Stoch Models 5: 181–217 zbMATHCrossRefMathSciNetGoogle Scholar
  5. Davis M, Schachermayer W and Tompkins R (2004). The evaluation of venture capital as an instalment option. Zeitschrift für Betriebswirtschaft 3: 77–96 Google Scholar
  6. Gerber HU (1968). Entscheidungskriterien fuer den zusammengesetzten poisson-prozess. Schweiz Aktuarver Mitt 1: 185–227 Google Scholar
  7. Gerber HU and Shiu ESW (2004). Optimal dividends: analysis with Brownian motion. North Am Actuar J 8(1): 1–20 zbMATHMathSciNetGoogle Scholar
  8. Gerber HU, Avanzi B and Shiu ESW (2007). Optimal dividends in the dual model. Insur Math Econ 41(1): 111–123 zbMATHCrossRefMathSciNetGoogle Scholar
  9. Grandits P, Hubalek F, Schachermayer W, Zigo M (2007) Optimal expected exponential utility of dividend payments in brownian risk model. Scand Actuar J (in press),
  10. Jacod J and Shiryaev A (1987). Limit theorem for stochastic processes. Springer, Berlin Google Scholar
  11. Jeanblanc-Picqué M and Shiryaev AN (1995). Optimization of the flow of dividends. Russ Math Surv 50(2): 257–277 zbMATHCrossRefGoogle Scholar
  12. Johnston J and Madura J (2002). The performance of internet firms following their initial public offering. Financ Rev 37: 525–550 CrossRefGoogle Scholar
  13. Øksendal B and Sulem A (2005). Applied stochastic controll of jump diffusions. Springer, New York Google Scholar
  14. Pennings E and Lint O (1997). The option value of advanced R&D. Eur J Oper Res 103: 83–94 zbMATHCrossRefGoogle Scholar
  15. Pham H (1998). Optimal stopping of controlled jump diffusion process: a viscosity solution approach. J Math Syst Estim Control 8(1): 1–27 MathSciNetGoogle Scholar
  16. Schmidli H (2007). Optimal control in insurance. Springer, New York Google Scholar
  17. Shreve SE, Lehoczky JP and Gaver DP (1984). Optimal consumption for general diffusions with absorbing and reflecting barriers. SIAM J Control Optim 22(1): 55–75 zbMATHCrossRefMathSciNetGoogle Scholar
  18. Willner R (1995). Valuing start-up venture growth options in real options in capital investments. MIT, Cambridge Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of MichiganAnn ArborUSA

Personalised recommendations