Performance analysis approximation in a queueing system of type M/G/1

  • Louiza Bouallouche-Medjkoune
  • Djamil Aissani
Original Article


In this work, we apply the strong stability method to obtain an estimate for the proximity of the performance measures in the M/G/1 queueing system to the same performance measures in the M/M/1 system under the assumption that the distributions of the service time are close and the arrival flows coincide. In addition to the proof of the stability fact for the perturbed M/M/1 queueing system, we obtain the inequalities of the stability. These results give with precision the error, on the queue size stationary distribution, due to the approximation. For this, we elaborate from the obtained theoretical results, the STR-STAB algorithm which we execute for a determined queueing system: M/Coxian − 2/1. The accuracy of the approach is evaluated by comparison with simulation results.


M/G/1 queue Strong stability Approximation Size stationary distribution Perturbation 


  1. Aïssani D, Kartashov NV. (1983). Ergodicity and stability of Markov chains with respect to operator topologies in space of transition Kernels. Dokl Akad Nauk Ukr SSR Ser A, N°11:3–5 (Russian)Google Scholar
  2. Aïssani D, Kartashov NV (1984) A strong stability of imbedded Markov chain in the M/G/1 queueing system. Teor. Veroyatnost. i Mat. Statist. 29, English translation in Theory Probab Math Statist 29:3–7Google Scholar
  3. Borovkov AA ed. (1984) Asymptotic methods in queueing theory. Wiley, New YorkzbMATHGoogle Scholar
  4. Carson JS, Banks J, Nelson BL. (1996) Discrete-event system simulation. 2nd edn. Prentice-Hall, New JerseyGoogle Scholar
  5. Franken P (1970) Ein stetigkeitssatz für Verlustsusteme. Operations-forschung and Math Stat 11:1–23Google Scholar
  6. Gelenbe E, Pujolle G (1998) Introduction to queueing networks. Wiley, New YorkGoogle Scholar
  7. Gnedenko BV (1970) Sur certains problèmes non r ésolus de la théorie de files d’attente. Six International Telegraphic Congress, MunichGoogle Scholar
  8. Hokstad P (1978) Approximation for the M/G/m queues. Opes Res 26:510–523zbMATHCrossRefGoogle Scholar
  9. Ipsen CF, Meyer D (1994) Uniform stability of Markov chains. Siam J Matrix Ana Appl 15N°4:1061–1074CrossRefMathSciNetGoogle Scholar
  10. Kalashnikov VV, Tsitsiachvili GC (1972) Sur la stabilité des systèmes de files d’attente relativement à leurs fonctions de répartition perturbées. J Izv AN USSR Technique Cybernétique N°2:41–49Google Scholar
  11. Kartashov NV (1986) Strongly stable Markov chains. J Soviet Mat 34:1493–1498CrossRefzbMATHGoogle Scholar
  12. Kartashov NV (1996) Strong stable Markov chains. VSP; Utrecht, TBiMC scientificzbMATHGoogle Scholar
  13. Kennedy D (1972) The continuity of the single server queue. J Appl Prob 9, N°3:370–381CrossRefGoogle Scholar
  14. Kovalenko IN, Kouznetsov NY, Shurenkov VM (1983) Stochastic processes. Naukovo Doumka Ed, KievzbMATHGoogle Scholar
  15. Rachev ST (1989) The problem of stability in Queueing theory. Queueing Syst 4:287–318CrossRefMathSciNetzbMATHGoogle Scholar
  16. Rossberg HJ (1965) Über die Verteilung Von Wartereiten. Mathematische Nachrichten. 20, N°1/2:1–16Google Scholar
  17. Stoyan D (1977) Ein stetigkeitssatz für einlinige Wartemodelle der Bedienungstheorie. Math Operations Forsch u Statist N°2:103–111Google Scholar
  18. Stoyan D. (1984) Comparison methods for queues and other stochastic models. In: Daley DJ. (ed). English translation. Wiley, New YorkGoogle Scholar
  19. Zolotariev VM (1975) On the continuity of stochastic sequences generated by recurrence procedures. J Theory Prob Appl T.20, N°4:834–847Google Scholar
  20. Wismer DA, Chattergy R (1978) Introduction to nonlinear optimization. Elsevier Ed., North Holland Inc., New YorkzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.LAMOS, Laboratory of Modelisation and Optimization of SystemsUniversity of BéjaiaBejaiaAlgeria

Personalised recommendations