Advertisement

Metrika

pp 1–24 | Cite as

Composite quantile estimation in partial functional linear regression model with dependent errors

  • Ping Yu
  • Ting Li
  • Zhongyi ZhuEmail author
  • Zhongzhan Zhang
Article
  • 60 Downloads

Abstract

In this paper, we consider composite quantile estimation for the partial functional linear regression model with errors from a short-range dependent and strictly stationary linear processes. The functional principal component analysis method is employed to estimate the slope function and the functional predictive variable, respectively. Under some regularity conditions, we obtain the optimal convergence rate of the slope function, and the asymptotic normality of the parameter vector. Simulation studies demonstrate that the proposed new estimation method is robust and works much better than the least squares based method when there are outliers in the dataset or the autoregressive error distribution follows a heavy-tailed distribution. Finally, we apply the proposed methodology to electricity consumption data.

Keywords

Composite quantile estimation Functional principal component analysis Functional linear regression model Short-range dependence Strictly stationary 

Mathematics Subject Classification

62G08 62G20 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 11671096, 11690013, 11731011, 11771032).

References

  1. Aneiros-Pérez G, Vieu P (2008) Nonparametric time series prediction: a semi-functional partial linear modeling. J Multivar Anal 99(5):834–857MathSciNetCrossRefGoogle Scholar
  2. Aneiros-Pérez G, Raña P, Vieu P, Vilar J (2018) Bootstrap in semi-functional partial linear regression under dependence. Test 27(3):659–679MathSciNetCrossRefGoogle Scholar
  3. Beran J, Liu H (2016) Estimation of eigenvalues, eigenvectors and scores in FDA models with dependent errors. J Multivar Anal 147:218–233MathSciNetCrossRefGoogle Scholar
  4. Bosq D (2012) Linear processes in function spaces: theory and applications. Springer, New YorkzbMATHGoogle Scholar
  5. Cai T, Hall P (2006) Prediction in functional linear regression. Ann Stat 34(5):2159–2179MathSciNetCrossRefGoogle Scholar
  6. Cardot H, Crambes C, Sarda P (2005) Quantile regression when the covariates are functions. J Nonparametr Stat 17(7):841–856MathSciNetCrossRefGoogle Scholar
  7. Chen K, Müller HG (2012) Conditional quantile analysis when covariates are functions, with application to growth data. J R Stat Soc Ser B 74(1):67–89MathSciNetCrossRefGoogle Scholar
  8. Hall P, Hooker G (2016) Truncated linear models for functional data. J R Stat Soci Ser B 78(3):637–653MathSciNetCrossRefGoogle Scholar
  9. Hall P, Horowitz JL (2007) Methodology and convergence rates for functional linear regression. Ann Stat 35(1):70–91MathSciNetCrossRefGoogle Scholar
  10. Horváth L, Kokoszka P (2012) Inference for functional data with applications. Springer, New YorkCrossRefGoogle Scholar
  11. Imaizumi M, Kato K (2018) PCA-based estimation for functional linear regression with functional responses. J Multivar Anal 163:15–36MathSciNetCrossRefGoogle Scholar
  12. Jiang X, Jiang J, Song X (2012) Oracle model selection for nonlinear models based on weighted composite quantile regression. Stat Sin 22:1479–1506MathSciNetzbMATHGoogle Scholar
  13. Kato K (2012) Estimation in functional linear quantile regression. Ann Stat 40(6):3108–3136MathSciNetCrossRefGoogle Scholar
  14. Knight K (1998) Limiting distributions for \(L_1\) regression estimators under general conditions. Ann Stat 26(2):755–770MathSciNetCrossRefGoogle Scholar
  15. Kong D, Xue K, Yao F, Zhang H (2016) Partially functional linear regression in high dimensions. Biometrika 103(1):147–159MathSciNetCrossRefGoogle Scholar
  16. Lovric M (2011) International Encyclopedia of statistical science. Springer, New YorkCrossRefGoogle Scholar
  17. Lu Y, Du J, Sun Z (2014) Functional partially linear quantile regression model. Metrika 77(2):317–332MathSciNetCrossRefGoogle Scholar
  18. Ma HQ, Bai Y, Zhu ZY (2016) Dynamic single-index model for functional data. Sci China Math 59(12):2561–2584MathSciNetCrossRefGoogle Scholar
  19. Shin H (2009) Partial functional linear regression. J Stat Plan Inference 139(10):3405–3418MathSciNetCrossRefGoogle Scholar
  20. Tang QG, Cheng LS (2014) Partial functional linear quantile regression. Sci China Math 57(12):2589–2608MathSciNetCrossRefGoogle Scholar
  21. Tang Y, Song X, Zhu Z (2015) Variable selection via composite quantile regression with dependent errors. Stat Neerl 69(1):1–20MathSciNetCrossRefGoogle Scholar
  22. Wu WB (2007) M-estimation of linear models with dependent errors. Ann Stat 35(2):495–521MathSciNetCrossRefGoogle Scholar
  23. Yao F, Müller HG, Wang JL (2005) Functional linear regression analysis for longitudinal data. Ann Stat 33(6):2873–2903MathSciNetCrossRefGoogle Scholar
  24. Yu D, Kong L, Mizera I (2016a) Partial functional linear quantile regression for neuroimaging data analysis. Neurocomputing 195(26):74–87CrossRefGoogle Scholar
  25. Yu P, Zhang Z, Du J (2016b) A test of linearity in partial functional linear regression. Metrika 79(8):953–969MathSciNetCrossRefGoogle Scholar
  26. Yu P, Zhu Z, Zhang Z (2018) Robust exponential squared loss-based estimation in semi-functional linear regression models. Comput Stat.  https://doi.org/10.1007/s00180-018-0810-2
  27. Yuan M, Cai T (2010) A reproducing kernel Hilbert space approach to functional linear regression. Ann Stat 38(6):3412–3444MathSciNetCrossRefGoogle Scholar
  28. Zhang L, Wang HJ, Zhu Z (2017) Composite change point estimation for bent line quantile regression. Ann Inst Stat Math 69(1):145–168MathSciNetCrossRefGoogle Scholar
  29. Zhou J, Chen Z, Peng Q (2016) Polynomial spline estimation for partial functional linear regression models. Comput Stat 31(3):1107–1129MathSciNetCrossRefGoogle Scholar
  30. Zou H, Yuan M (2008) Composite quantile regression and the oracle model selection theory. Ann Stat 36(3):1108–1126MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ping Yu
    • 1
    • 2
  • Ting Li
    • 1
  • Zhongyi Zhu
    • 1
    Email author
  • Zhongzhan Zhang
    • 3
  1. 1.Department of StatisticsFudan UniversityShanghaiChina
  2. 2.School of Mathematics and Computer ScienceShanxi Normal UniversityLinfenChina
  3. 3.College of Applied SciencesBeijing University of TechnologyBeijingChina

Personalised recommendations