, Volume 82, Issue 1, pp 71–86 | Cite as

Kernel-based methods for combining information of several frame surveys

  • I. Sánchez-BorregoEmail author
  • A. Arcos
  • M. Rueda


A sample selected from a single sampling frame may not represent adequatly the entire population. Multiple frame surveys are becoming increasingly used and popular among statistical agencies and private organizations, in particular in situations where several sampling frames may provide better coverage or can reduce sampling costs for estimating population quantities of interest. Auxiliary information available at the population level is often categorical in nature, so that incorporating categorical and continuous information can improve the efficiency of the method of estimation. Nonparametric regression methods represent a widely used and flexible estimation approach in the survey context. We propose a kernel regression estimator for dual frame surveys that can handle both continuous and categorical data. This methodology is extended to multiple frame surveys. We derive theoretical properties of the proposed methods and numerical experiments indicate that the proposed estimator perform well in practical settings under different scenarios.


Kernel regression Nonparametric regression Dual frame survey Multiple frame survey Model-assisted estimation 



This research was supported by Ministerio de Economía y Competitividad. Grant number [MTM2015-63609-R] and by Consejería de Economía, Innovación, Ciencia y Empleo (Grant SEJ2954, Junta de Andalucía, Spain).


  1. Aitchison J, Aitken CGG (1976) Multivariate binary discrimination by the kernel method. Biometrika 63:413–420MathSciNetCrossRefzbMATHGoogle Scholar
  2. Arcos A, Molina D, Rueda M, Ranalli M (2015) Frames2: a package for estimation in dual frame surveys. R J 7(1):52–72Google Scholar
  3. Bankier M (1986) Estimators based on several stratified samples with applications to multiple frame surveys. J Am Stat Assoc 81:1074–1079CrossRefzbMATHGoogle Scholar
  4. Breidt FJ, Opsomer J (2000) Local polynomial regression estimators in survey sampling. Ann Stat 28:1026–1053CrossRefzbMATHGoogle Scholar
  5. Breidt FJ, Opsomer J (2009) Nonparametric and semiparametric estimation in complex surveys. In: Rao C, Pfeffermann D (eds) Handbook of statistics, vol 29. Part B: sample surveys: theory, methods and inference. North Holland, Amsterdam, pp 103–119Google Scholar
  6. Brick JM, Dipko S, Presser S, Tucker C, Yuan Y (2006) Nonresponse bias in a dual frame survey of cell and landline numbers. Public Opin Q 70:780–793CrossRefGoogle Scholar
  7. Epanechnikov VA (1969) Non-parametric estimation of a multivariate probability density. Theor Probab Appl 14(1):153–158MathSciNetCrossRefGoogle Scholar
  8. Fan I, Gijbels I (1996) Local polynomial modelling and its applications. Chapman & Hall, LondonzbMATHGoogle Scholar
  9. Fuller W, Burmeister L (1972) Estimators for samples selected from two overlapping frames. In: Proceedings of social science section of The American Statistical Asociation, pp 101–102Google Scholar
  10. Hartley HO (1962) Multiple frame surveys. In: Proceedings of the social statistics section, American Statistical Association, pp 203–206Google Scholar
  11. Hartley HO (1974) Multiple frame methodology and selected applications. Sankhya 36:99–118Google Scholar
  12. Horvitz DG, Thompson DJ (1952) A generalization of sampling without replacement from a finite universe. J Am Stat Assoc 47:663–685MathSciNetCrossRefzbMATHGoogle Scholar
  13. Iachan R, Dennis ML (1993) A multiple frame approach to sampling the homeless and transient population. J Off Stat 9:747–764Google Scholar
  14. Kalton G, Anderson D (1986) Sampling rare populations. J R Stat Soc Ser A (General) 149(1):65–82CrossRefGoogle Scholar
  15. Kuo L (1988) Classical and prediction approaches to estimating distribution functions from survey data. In: ASA Proceedings of the section on survey re-search methods, American Statistical Association, vol 420, pp 280–285Google Scholar
  16. Lohr SL (2011) Alternative survey sample designs: sampling with multiple overlapping frames. Surv Methodol 37(2):197–213Google Scholar
  17. Lohr SL (2009) Multiple frame surveys. In: Pfeffermann D, Rao C (eds) Handbook of statistics, vol 29. Part A: sample surveys: design, methods and applications. North Holland, Amsterdam, pp 71–78Google Scholar
  18. Lohr S, Rao J (2006) Estimation in multiple-frame surveys. J Am Stat Assoc 101(475):1019–1030MathSciNetCrossRefzbMATHGoogle Scholar
  19. Mecatti F, Singh AC (2014) Estimation in multiple frame surveys: a simplified and unified review using the multiplicity approach. J-SFdS 155(5):51–69MathSciNetzbMATHGoogle Scholar
  20. Mecatti F (2007) A single frame multiplicity estimator for multiple frame surveys. Surv Methodol 33(2):151–157Google Scholar
  21. Metcalf P, Scott A (2009) Using multiple frames in health surveys. Stat Med 28:1512–1523MathSciNetCrossRefGoogle Scholar
  22. Montanari GE, Ranalli MG (2005) Nonparametric model calibration estimation in survey sampling. J Am Stat Assoc 100(472):1429–1442MathSciNetCrossRefzbMATHGoogle Scholar
  23. Nadaraya EA (1964) On estimating regression. Theor Probab Appl 9(1):141–142CrossRefzbMATHGoogle Scholar
  24. Ranalli MG, Arcos A, Rueda M, Teodoro A (2016) Calibration estimation in dual-frame surveys. Stat Method Appl 25(3):321–349MathSciNetCrossRefzbMATHGoogle Scholar
  25. Rao J, Wu C (2010) Pseudoempirical likelihood inference for multiple frame surveys. J Am Stat Assoc 105(492):1494–1503CrossRefzbMATHGoogle Scholar
  26. Rueda M, Sánchez-Borrego I (2009) A predictive estimator of finite population mean using nonparametric regression. Comput Stat 24:1–14MathSciNetCrossRefzbMATHGoogle Scholar
  27. Rueda M, Arcos A, Molina D, Ranalli M (2017) Estimation techniques for ordinal data in multiple frame surveys with complex sampling designs. Int Stat Rev 86:51–67. (in press)MathSciNetCrossRefGoogle Scholar
  28. Sánchez-Borrego I, Opsomer J, Rueda M, Arcos A (2014) Nonparametric estimation with mixed data types in survey sampling. Rev Mat Complut 27(2):685–700MathSciNetCrossRefzbMATHGoogle Scholar
  29. Singh AC, Mecatti F (2011) Generalized multiplicity-adjusted Horvitz–Thompson estimation as a unified approach to multiple frame surveys. J Off Stat 27(4):633–650Google Scholar
  30. Singh AC, Mecatti F (2014) Estimation in multiple frame surveys: a simplified and unified review using the multiplicity approach. SFdS 155:28–50MathSciNetzbMATHGoogle Scholar
  31. Skinner C (1991) On the eficiency of raking ratio estimation for multiple frame surveys. J Am Stat Assoc 86(415):779–784CrossRefzbMATHGoogle Scholar
  32. Skinner C, Rao J (1996) Estimation in dual frame surveys with complex designs. J Am Stat Assoc 91(433):349–356MathSciNetCrossRefzbMATHGoogle Scholar
  33. Watson GS (1964) Smooth regression analysis. Sankhya Ser A 26(4):359–372MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Statistics and Operational Research, Faculty of ScienceUniversity of GranadaGranadaSpain

Personalised recommendations