Skip to main content
Log in

Estimating moments in ANOVA-type mixed models

  • Published:
Metrika Aims and scope Submit manuscript

Abstract

In the paper, a simple projection-based method is systematically developed to estimate the qth (\(q\ge 2\)) order moments of random effects and errors in the ANOVA type mixed model (ANOVAMM), where the response may not be divided into independent sub-vectors. All the estimates are weakly consistent and the second-order moment estimates are strongly consistent. Besides, the derived estimates are different from those in mixed models with cluster design. Simulation studies are conducted to examine the finite sample performance of the estimates and two real data examples are analyzed for illustration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Barameshwar PK, Vashista M (2014) Application of skewness and kurtosis for analysis of Barkhausen noise signal. J Basic Appl Eng Res 1(3):25–29

  • Chen XR, Zhu LX, Fang KT (1996) Almost sure convergence of weighted sums. Stat Sinica 6:499–507

    MATH  MathSciNet  Google Scholar 

  • Cui HJ (2004) Estimation in partial linear EV models with replicated observations. Sci China Ser A 47:144–159

    Article  MATH  MathSciNet  Google Scholar 

  • Demidenko E (2004) Mixed models: theory and applications. Wiley, New York

    Book  MATH  Google Scholar 

  • Ebert S (2013) Moment characterization of higher-order risk preferences. Theor Decis 74:267–284

    Article  MATH  MathSciNet  Google Scholar 

  • Gluhovsky A, Agee E (2009) Estmating higher-order moments of nonlinear time series. J Appl Meteorol Climatol 48:1948–1954

    Article  Google Scholar 

  • Jamison B, Orey S, Pruiyy W (1965) Convergence of weighted averages of independent random variables. Z Wahrsch Verb Gebiete 4:40–44

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang JM (1996) REML estimation: asymptotic behavior and related topics. Ann Stat 24:255–286

    Article  MATH  MathSciNet  Google Scholar 

  • Jiang JM (2003) Empirical methods of moments and its applications. J Stat Plann Inference 33:2695–2731

    MathSciNet  Google Scholar 

  • Jiang JM (2007) Linear and generalized linear mixed models and their applications. Springer, New York

    MATH  Google Scholar 

  • Kutner MH (1974) Hypothesis testing in linear models (Eisenhart model). Am Stat 28:98–100

    Google Scholar 

  • Kazuhiro T, Yuki H (2008) Comparison of deterioration factor of 6th order moment and cumulant in a Broad Sense. Econ Res Osaka Prefect Univ 54(3):65–81

    Google Scholar 

  • Li ZX (2011) Estimation in linear mixed models for longitudinal data under linear restricted conditions. J Stat Plann Inference 141:869–876

    Article  MATH  MathSciNet  Google Scholar 

  • Li ZX, Chen F, Zhu LX (2014) Variance components testing in ANOVA-type mixed models. Scand J Stat Theory Appl 41:482–496

    Article  MATH  MathSciNet  Google Scholar 

  • Miller JJ (1977) Asymptotic properties of maximum likelihood estimates in the mixed model of the analysis of variance. Ann Stat 5:746–762

    Article  MATH  MathSciNet  Google Scholar 

  • Nguyen D, Puri TN (2009) Higher order systematic co-moments and ssset pricing: new evidence. Financ Rev 44:345–369

    Article  Google Scholar 

  • Xu NR (2016) Higher-order moments of economic growth at different stages of financial development (March 30, 2016). Available at SSRN: http://ssrn.com/abstract=2757663

  • You LY, Nguyen D (2013) Higher order moment risk inefficient futures portifolios. J Econ Bus 65:33–54

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor, the associate editor and a referee for their constructive suggestions that substantially improved an earlier manuscript. The research was supported by the National Natural Science Foundation of China (11671398, 11001267, 11261064), the State Key Lab of Coal Resources and Safe Mining (No. SKLCRSM16KFB03), the Fundamental Research Funds for the Central Universities in China (2009QS02), the Beijing Youth Talent Program (No. YETP0945), and a grant from Research Grants Council of Hong Kong, Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixing Zhu.

Additional information

This research was supported by a grant from the University Grants Council of Hong Kong, Hong Kong, China, and a Grant (NSFC11671042) from the Natural Science Foundation of China.

Appendices

Appendix A: Regularity conditions

Condition C.1: The random errors \(\{\epsilon _i\}_{i=1}^n\) are independent with the same qth order moment \(\gamma _q^\epsilon \) for \(q\ge 2\).

Condition C.2: (1). As \(n\rightarrow \infty \), \(n-rw\rightarrow \infty \) where \(rw=\mathrm{rank} (W)\);

(2) \(rw/n=o(1)\) and \(s_{(n)}=o(n^{-1/4}\text{ log }^{-2}n)\) where \(s_{(n)}=\max _{1\le i \le n} \sum _{1\le j \le n, j\ne i} |l_{ij}|\);

(3) For \(k=1,\ldots ,s\), \(s_{(n)}^{(k)}=o\left( m_k^{-1/4}\text{ log }^{-2}m_k\right) \) where \(s_{(n)}^{(k)}=\max _{1\le j \le m_k} \sum _{j\ne j'} |a_{jj'}^{(k)}|\) with \(a_{jj'}^{(k)}\) being the \((j,j')\)th element of \(Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k\) [see the identity in (17)].

Condition C.3: The random effects \(\{\alpha _k\}_{k=1}^s\) are independent and independent of the random errors \(\{\epsilon _i\}_{i=1}^n\). Besides, \(\alpha _k\) has independent components \(\alpha _{kj}\) (for \(j=1,\ldots ,m_k\)) with the same qth order moment \(\gamma _q^{\alpha _{k}}\equiv E(\alpha _{k1}^q)=\cdots =E(\alpha _{km_k}^q)\).

Condition C.4: For \(k=1,2,\ldots ,s\), \(\lim _{n\rightarrow \infty } \frac{\sum _{i=1}^n \sum _{i'=1}^n \left( u_{i}^{(k)} {u_{i'}^{(k)}}^\mathrm{T}\right) ^2}{\left\{ \sum _{j=1}^{m_k} \sum _{i=1}^n \left( u_{ij}^{(k)}\right) ^2\right\} ^2}=0\).

Condition C.5: The eigenvalues of \(\{Z_k Z_k^\mathrm{T}\}_{k=1}^s\) are bounded away from zero and infinity.

Condition C.6: There are some positive constants \(c_1\) and \(c_2\) so that \(c_1 \le \mathrm{tr}(Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k)/m_k \le c_2\) for \(k=1,\ldots ,s\).

Condition C.7: (1) As \(n\rightarrow \infty \), \(\sum _{i=1}^n \sum _{j=1}^n l_{ij}^q \rightarrow \infty \) for \(q\ge 2\);

(2)As \(n\rightarrow \infty \), \(\sum _{i=1}^n \sum _{j=1}^{m_k} \left( u_{ij}^{(k)}\right) ^q \rightarrow \infty \) for \(q\ge 2\).

Condition C.8: There are the finite \((q+\delta )\)th order moments of \(\epsilon _i\) and \(\alpha _{k1}\) with \(k=1,\ldots ,s\) for some positive constant \(\delta \).

Remark 3

Most of the conditions are standard. Conditions C.2(2)(3) are also reasonable. Notice that \(P_{W^\bot }\) is an idempotent matrix and \(s_{(n)}\le \max _{1\le i \le n} l_{ii}\equiv l_{(n)}\). If \(l_{ii}=1\), then \(l_{ij}= 0\) for \(j\ne i\); otherwise, \(0\le l_{ij}<l_{(ii)}<1\). In fact, Condition C.2(2) is the requirement for off-diagonal elements in \(P_{W^\bot }\), which is similar to condition C.3 in Cui (2004). Similarly for Condition C.2(3). Our conditions of establishing the (strong) consistency of estimates may not be the most general, and may be reduced.

Appendix B: Proofs

Some identities and lemmas are introduced first.

Identities:

$$\begin{aligned}&\sum _{i=1}^n \sum _{j=1}^n l_{ij}^2 = \mathrm{tr} (P_{W^\bot })=n-rw, \sum _{i=1}^n \sum _{j=1}^n \left( v_{ij}^{(k)}\right) ^2=\mathrm{tr} (P_{W_{-k}^\bot })=n-rw_{-k}, \nonumber \\&a_{jj'}^{(k)}\equiv \left( Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k\right) _{jj'}= \sum _{i=1}^n u_{ij}^{(k)} u_{ij'}^{(k)}, sum_{j=1}^{m_k} \sum _{i=1}^n \left( u_{ij}^{(k)}\right) ^2=\mathrm{tr} \left( Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k\right) ,\nonumber \\ \end{aligned}$$
(17)

Notice that the (ij)th element of \(\left( Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k\right) ^2\) is \(\sum _{i'=1}^{m_k}u_{i}^{(k)} {u_{i'}^{(k)}}^\mathrm{T}u_{i'}^{(k)} {u_{j}^{(k)}}^\mathrm{T}\). Then

$$\begin{aligned}&\mathrm{tr} \left\{ (Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k)^2\right\} = \sum _{i=1}^n \sum _{i'=1}^n \left( u_{i}^{(k)} {u_{i'}^{(k)}}^\mathrm{T}\right) ^2,\nonumber \\&\quad \frac{\mathrm{tr} \left\{ (Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k)^2\right\} }{\left\{ \mathrm{tr} (Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k)\right\} ^2} = \frac{\sum _{i=1}^n \sum _{i'=1}^n \left( u_{i}^{(k)} {u_{i'}^{(k)}}^\mathrm{T}\right) ^2}{\left\{ \sum _{j=1}^{m_k} \sum _{i=1}^n \left( u_{ij}^{(k)}\right) ^2\right\} ^2}. \end{aligned}$$

These identities can be easily derived by some elementary calculations, and the details are omitted. They are of interest by themselves and are important to prove the theorems.

1.1 Lemmas:

Lemma 1

(Convergence of weighted sums of independent random variables) Assume that the independent random variables \(\xi _i\) have the same mean \(E(\xi _1)\) and there are positive constants \(b_i\) such that \(\lim _{n\rightarrow \infty } B_n =\infty \) with \(B_n=\sum _{i=1}^n {b_i}\). If \(\lim _{n\rightarrow \infty }\max _{1\le i \le n} b_i/B_n =0\) and \(\sup _{n}\{N(n)/n\} <\infty \) where \(N(n) \equiv \#(i:b_i^{-1}B_i \le n)\) denotes the number of i subject to \(b_i^{-1}B_i\le n\), then \(B_n^{-1} \sum _{i=1}^n b_i \xi _i \mathop {\rightarrow }\limits ^{a.s.} E(\xi _1)\). Moreover, if \(c_1\le b_i\le c_2\) for some positive constants \(c_1\) and \(c_2\), then \(B_n^{-1} \sum _{i=1}^n b_i \xi _i \mathop {\rightarrow }\limits ^{a.s.} E(\xi _1)\).

This lemma can be found in Jamison et al. (1965). \(\square \)

Lemma 2

(Convergence of weighted sums of independent random variables) Assume that \(\xi _1,\xi _2,\ldots ,\xi _n,\ldots \) are i.i.d. random variables with \(E(\xi _1)=0\) and \(E|\xi _1|^r < \infty \) for some \(r\in (1,2)\), the constants \(b_i\ne 0\) for \(i\ge 1\) and \(0<B_1 \le B_2 \le \cdots \rightarrow \infty \). Then if \(\{N(n)/n^r\}=O(1)\) with N(n) defined in Lemma 1, we have \(B_n^{-1} \sum _{i=1}^n b_i \xi _i \mathop {\rightarrow }\limits ^{a.s.} E(\xi _1)\).

This is Theorem 2 in Chen et al. (1996). \(\square \)

Lemma 3

Assume that \(\xi _1,\xi _2,\ldots ,\xi _n\) are independent random variables satisfying \(E(\xi _i)=0\) and \(\sup _i E|\xi _i|^r < \infty \) for some \(r\ge 1\). Let \(\{b_{ij}\}\) be a series of real numbers. Then

$$\begin{aligned} max_{1\le j \le n}\sum _{i=1}^n \left| b_{ij}\xi _i\right| =o\left\{ \text{ log }^2n \cdot \max \left( n^{1/r}d_n,\sqrt{s_n d_n}\right) \right\} \quad a.s. \end{aligned}$$

where \(s_n=\max _{1\le j \le n}\sum _{i=1}^n |b_{ij}|\), \(d_n=\max _{1\le i,j\le n}|b_{ij}|\).

It is Lemma 3 in Cui (2004). \(\square \)

Proof of Theorem 1

(1) Strong consistency of \(\widehat{\gamma }_2^\epsilon \). Notice that \(\widehat{\gamma }_2^\epsilon =\epsilon ^\mathrm{T}P_{W^\bot } \epsilon /(n-rw)\). For \(i,j=1,\ldots ,n\), let \(l_{ij}\) be the (ij)th element of the matrix \(P_{W^\bot }\). Then \(l_{ij}\) is the jth element of \(l_i\) defined in the text where \(l_{ii}\ge 0\) and \(\sum _{i=1}^n l_{ii}=n-rw\). Further, \(P_{W^\bot }^\mathrm{T}=P_{W^\bot }\) and \(P_{W^\bot }^2=P_{W^\bot }\) imply \(\sum _{j=1}^n l_{ij}^2=l_{ii}\), which yields \(0\le l_{ii} \le 1\) for all \(1\le i \le n\) and for \(i\ne j\), if \(l_{ij}\ne 0\), \(0<l_{ii}<1\). Notice that

$$\begin{aligned} \widehat{\gamma }_2^\epsilon =\frac{\sum _{i=1}^n l_{ii} \epsilon _i^2}{n-rw}+\frac{\sum _{i\ne j} l_{ij} \epsilon _i \epsilon _j}{n-rw} \equiv II_1+II_2. \end{aligned}$$

Without loss of generality, assume \(l_{ii}>0\) for \(i=1,\ldots ,n'\) with \(n' \le n\). Thus, \(II_1={\sum _{i=1}^{n'} l_{ii} \epsilon _i^2}/{(n-rw)}\) and \(n-rw=\sum _{i=1}^{n'} l_{ii}\). According to Conditions C.1 and C.2 (1) and Lemma 1, \(II_1 \mathop {\rightarrow }\limits ^{a.s.} {\gamma }_2^\epsilon \).

Further, \(II_2\mathop {\rightarrow }\limits ^{a.s.} 0\). In fact, let \(s_{(n)}=\max _{1\le i \le n}\left\{ \sum _{1\le j \le n, j\ne i}|l_{ij}|\right\} \), \(d_{(n)}=\max _{1\le i\ne j \le n} |l_{ij}|\), and then one has \(d_{(n)}\le s_{(n)}\). According to the nonnegative definite property of \(P_{W^\bot }\), \(0\le d_{(n)} \le s_{(n)} \le l_{(n)} \le 1\) where \(l_{(n)}=\max _{1\le i \le n}l_{ii}\). Then by Conditions C.1, C.2(2) and Lemma 3, \(\max _{1\le i \le n} |\sum _{j\ne i} l_{ij} \epsilon _j|=o(1)\) a.s. Moreover, noting that \(0\le II_2 \le s_{(n)} \cdot \sum _{i=1}^n |\epsilon _i | /(n-rw)\), one has \(II_2\mathop {\rightarrow }\limits ^{a.s.}0\).

(2) Strong consistency of \(\widehat{\gamma }_2^{\alpha _k}\) for \(k=1,2,\ldots ,s\). Recalling (3) and (6), one has

$$\begin{aligned} \widehat{\gamma }_2^{\alpha _k}= & {} \frac{\sum _{i=1}^n \left( {u_i^{(k)}} \alpha _k \right) ^2 }{\sum _{i=1}^n \sum _{j=1}^{m_k} \left( u_{ij}^{(k)}\right) ^2 } +\frac{\sum _{i=1}^n \left( {v_i^{(k)}}^\mathrm{T}\epsilon \right) ^2 - {\gamma }_2^\epsilon \cdot \sum _{i=1}^n \sum _{j=1}^n \left( v_{ij}^{(k)}\right) ^2}{\sum _{i=1}^n \sum _{j=1}^{m_k} \left( u_{ij}^{(k)}\right) ^2 } \nonumber \\&-(\widehat{\gamma }_2^\epsilon -{\gamma }_2^\epsilon ) \cdot \frac{ \sum _{i=1}^n \sum _{j=1}^n \left( v_{ij}^{(k)}\right) ^2}{\sum _{i=1}^n \sum _{j=1}^{m_k} \left( u_{ij}^{(k)}\right) ^2 } +2 \frac{ \sum _{i=1}^n \left( u_{i}^{(k)} \alpha _k {v_{i}^{(k)}}^\mathrm{T}\epsilon \right) }{\sum _{i=1}^n \sum _{j=1}^{m_k} \left( u_{ij}^{(k)}\right) ^2 } \nonumber \\\equiv & {} IIk_1+IIk_2- (\widehat{\gamma }_2^\epsilon -{\gamma }_2^\epsilon ) \cdot IIk_3 +2 IIk_4. \end{aligned}$$
(18)

Notice that by the identity (17)

$$\begin{aligned} IIk_1= & {} \frac{\sum _{j=1}^{m_k}\sum _{i=1}^n \left( {u_{ij}^{(k)}} \right) ^2 \alpha _{kj}^2 }{\sum _{j=1}^{m_k} \sum _{i=1}^n \left( u_{ij}^{(k)}\right) ^2 } {+} \frac{\sum _{j=1}^{m_k} \alpha _{kj} \left\{ \sum _{1\le j' \le m_k, j'\ne j'} \left( \sum _{i=1}^n {u_{ij}^{(k)}} {u_{ij'}^{(k)}} \right) \alpha _{kj'} \right\} }{\sum _{j=1}^{m_k} \sum _{i=1}^n \left( u_{ij}^{(k)}\right) ^2 } \\= & {} \frac{\sum _{j=1}^{m_k} a_{jj}^{(k)} \alpha _{kj}^2 }{\sum _{j=1}^{m_k}a_{jj}^{(k)}} + \frac{\sum _{j=1}^{m_k} \alpha _{kj} \left\{ \sum _{1\le j' \le m_k, j'\ne j'} a_{jj'}^{(k)} \alpha _{kj'} \right\} }{\sum _{j=1}^{m_k}a_{jj}^{(k)}}\\\equiv & {} IIk_{11}+IIk_{12}, \end{aligned}$$

where \(a_{jj}^{(k)}\ge \sum _{j' \ne j} |a_{jj'}^{(k)}|\) by the nonnegative definite property of the matrix \(Z_k^\mathrm{T}P_{W_{-k}^\bot } Z_k\). Thus, similar to the derivation for the strong consistency of \(\widehat{\gamma }_2^\epsilon \) and under Condition C.5, one can obtain \(IIk_{11}\mathop {\rightarrow }\limits ^{a.s.} {\gamma }_2^{\alpha _k}\) by Lemma 1 and \(IIk_{12}\mathop {\rightarrow }\limits ^{a.s.} 0\) by Lemma 3, Conditions C.2(1), C.2(3), C.5 and C.6. These yield \(c_1\le \sum _{j=1}^{m_k} a_{jj}^{(k)} /m_k \le c_2 \) for some positive constants \(c_1,c_2\). Thus, \(IIk_{1}\mathop {\rightarrow }\limits ^{a.s.} {\gamma }_2^{\alpha _k}\).

Further, noting that \(0\le \sum _{j\ne i}|v_{ij}^{(k)}| \le v_{ii}^{(k)}\le 1\), Condition C.2(2) indicates that \(rw_{-k}/n=o(1)\) and Conditions C.2(2),(3) and C.5 imply that \(\tilde{s}_{(n)}=o(n^{-1/4}\text{ log }^{-2}n)\) where \(\tilde{s}_{(n)}=\max _{1\le i \le n} \sum _{j\ne i} |v_{ij}^{(k)}|\), one has \({\sum _{i=1}^n \left( {v_i^{(k)}}^\mathrm{T}\epsilon \right) ^2}/{\sum _{i=1}^n \left( {v_{ij}^{(k)}}^2 \right) }\mathop {\rightarrow }\limits ^{a.s.} {\gamma }_2^\epsilon \). Moreover, Condition C.5 yields \(IIk_3=O(1)\) which leads to \(IIk_2\mathop {\rightarrow }\limits ^{a.s.} 0\). Noting that \(E(IIk_4)=0\) and

$$\begin{aligned} IIk_4=\frac{\sum _{j=1}^{m_k} \alpha _{kj} \left[ \sum _{j'=1}^n \epsilon _{j'} \left\{ \sum _{i=1}^n \left( u_{ij}^{(k)} v_{ij'}^{(k)}\right) \right\} \right] }{\sum _{j=1}^{m_k} \sum _{i=1}^n \{u_{ij}^{(k)}\}^2}, \end{aligned}$$

one has \(IIk_4 \mathop {\rightarrow }\limits ^{a.s.} 0\) by Conditions C.2(3), C.3, C.5, C.6 and Lemma 3. \(\square \)

Proof of Theorem 2

(1) The consistency of \(\widehat{\gamma }_q^{\epsilon }\) with \(q\ge 2\). According to the derivation of \(\widehat{\gamma }_q^{\epsilon }\), one has

$$\begin{aligned} E\left\{ \sum _{i=1}^n \left( l_i^\mathrm{T}Y \right) ^q \right\}= & {} \left( \sum _{i=1}^n \sum _{j=1}^n l_{ij}^q \right) \cdot E(\epsilon _1^q) \nonumber \\&+\sum _{S(n;0,q-2;q)} \sum _{i=1}^n \left( \mathop \Pi \limits _{j=1}^n l_{l_ij}^{s_j} \right) \cdot \left\{ E(\epsilon _1^{s_1}) \ldots E(\epsilon _1^{s_n}) \right\} , \end{aligned}$$

and then it is sufficient to verify

$$\begin{aligned}&\dfrac{\sum _{i=1}^n \left\{ \left( l_i^\mathrm{T}\epsilon \right) ^q - E\left( l_i^\mathrm{T}\epsilon \right) ^q \right\} }{\sum _{i=1}^n \sum _{j=1}^n l_{ij}^q} =o_p(1), \end{aligned}$$
(19)
$$\begin{aligned}&\dfrac{ \sum _{S(n;0,q-2;q)} \sum _{i=1}^n \left( \Pi _{j=1}^n l_{l_ij}^{s_j} \right) \cdot \left\{ \gamma ^\epsilon _{s_1} \ldots \gamma ^\epsilon _{s_n}- \widehat{\gamma }_\epsilon ^{s_1} \ldots \widehat{\gamma }_\epsilon ^{s_n} \right\} }{\sum _{i=1}^n \sum _{j=1}^n l_{ij}^q} =o_p(1). \end{aligned}$$
(20)

In fact, notice that \(0\le s_1,\ldots , s_n \le q\) and \(s_1+\ldots s_n=q\) with the finite q, for each \((s_1,\ldots ,s_n)\) with finite items, \(\frac{\sum _{i=1}^n \left( \Pi _{j=1}^n l_{l_{ij}}^{s_j} \right) }{\sum _{i=1}^n \sum _{j=1}^n l_{ij}^q}=O(1)\) under condition C.7(1), and then by the consistency of \(\widehat{\gamma }_{s_j}^{\epsilon }\) with \(s_j<q\), (20) is derived, and \(\frac{ \Pi _{j=1}^n \sum _{i=1}^n l_{l_{ij}}^{s_j} \left\{ \epsilon _j^{s_j}-E\left( \epsilon _j^{s_j}\right) \right\} }{\sum _{i=1}^n \sum _{j=1}^n l_{ij}^q}=o_p(1)\) by condition C.7(1) and C.8, which yields (19). (2) The consistency of \(\widehat{\gamma }^{\alpha _{k}}_q\) with \(q\ge 2\). Recalling the estimate \(\widehat{\gamma }^{\alpha _{k}}_q\) in (8), one has \(\widehat{\gamma }^{\alpha _{k}}_q = \widehat{II}_1^{\alpha q} -\widehat{II}_2^{\alpha q} -\sum _{t=0}^{q-1} C_q^t \cdot \widehat{II}_3^{\alpha qt}\) where

$$\begin{aligned} \widehat{II}_1^{\alpha q}= & {} \frac{\sum _{i=1}^n \left( {v_i^{(k)}}^\mathrm{T}Y \right) ^q}{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q} =\frac{\sum _{i=1}^n \left( {u_i^{(k)}} \alpha _k + {v_i^{(k)}}^\mathrm{T}\epsilon \right) ^q}{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q}, \\ \widehat{II}_2^{\alpha q}= & {} \frac{\sum _{S(m_k;0,q-2;q)} \left[ \sum _{i=1}^n \Pi _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^{s_{j'}} \cdot \left\{ \widehat{\gamma }^{\alpha _{k}}_{s_1} \cdots \widehat{\gamma }^{\alpha _{k}}_{s_{m_k}} \right\} \right] }{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q},\\ \widehat{II}_3^{\alpha qt}= & {} \frac{\sum _{i=1}^n \left[ \sum _{S(m_k;0,t;t)} \Pi _{j'=1}^{m_k} \left\{ \left( u_{ij'}^{(k)}\right) ^{s_{j'}} \widehat{\gamma }^{\alpha _{k}}_{s_{j'}} \right\} \right] \left[ \sum _{S(n;0,q-t;q-t)} \Pi _{j=1}^{n} \left\{ \left( v_{ij}^{(k)}\right) ^{s_{j}} \widehat{\gamma }^{\epsilon }_{s_j} \right\} \right] }{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q}\\\equiv & {} \frac{\sum _{i=1}^n \widehat{II}_{31zi}^{\alpha qt} \cdot \widehat{II}_{32zi}^{\alpha qt}}{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q}, \end{aligned}$$

and \({II}_2^{\alpha q}\), \({II}_3^{\alpha qt}\), \({II}_{31zi}^{\alpha qt}\), \({II}_{32zi}^{\alpha qt}\) are the corresponding items of \(\widehat{II}_2^{\alpha q}\), \(\widehat{II}_3^{\alpha qt}\), \(\widehat{II}_{31zi}^{\alpha qt}\), \(\widehat{II}_{32zi}^{\alpha qt}\) in which the estimates \(\widehat{\gamma }^{\alpha _k}_{s_{j_k}}\), \(\widehat{\gamma }^\epsilon _{s_{j'}}\) are replaced by their true values \({\gamma }^{\alpha _k}_{s_{j_k}}\) and \({\gamma }^\epsilon _{s_{j'}}\) with \(s_{j_k}=1,\ldots ,q\), and \(s_{j'}=1,\ldots ,q-1\). Besides, notice that \(E\left( \widehat{II}_1^{\alpha q}\right) =E(\alpha _{k1}^q)-II_2^{\alpha q}-\sum _{t=0}^{q-1} C_q^t \cdot II_3^{\alpha qt}\), and by the consistency of \(\widehat{\gamma }^{\alpha _k}_{s_{j_k}}\) in Theorem 1, condition C.7(2) and the fact that q is finite, \(\widehat{II}_2^{\alpha q}-{II}_2^{\alpha q}=o_p(1)\). Thus, it suffices to derive that \(\widehat{II}_1^{\alpha q}-{II}_1^{\alpha q} = o_p(1)\) and \(\widehat{II}_3^{\alpha qt}-{II}_3^{\alpha qt} = o_p(1)\). In fact,

$$\begin{aligned}&\displaystyle \widehat{II}_1^{\alpha q}-{II}_1^{\alpha q} = \sum _{t=0}^q C_q^t \cdot II_{nt}^{\alpha q}, \\&\displaystyle II_{nt}^{\alpha q}= \frac{\sum _{i=1}^n \left\{ \left( {u_i^{(k)}} \alpha _k\right) ^t \left( {v_i^{(k)}}^\mathrm{T}\epsilon \right) ^{q-t}- E\left( {u_i^{(k)}} \alpha _k\right) ^t \cdot E\left( {v_i^{(k)}}^\mathrm{T}\epsilon \right) ^{q-t}\right\} }{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q}, \end{aligned}$$

and then by conditions C.1, C.5, C.7(2), C.8, we have \(II_{nt}^{\alpha q}=o_p(1)\) for \(t=0,\ldots ,q\).

For \(t=0\), \(\widehat{II}_{31zi}^{\alpha qt}=1\) and then by the consistency of \(\widehat{\gamma }_{s_{j_k}}^{\epsilon }\) with \(s_{j_k}<q\), the finiteness of q, conditions C.5, C.7(2)

$$\begin{aligned} \widehat{II}_3^{\alpha qt}-{II}_3^{\alpha qt}= & {} \frac{ \sum _{S(m_k;0,q;q)} \sum _{i=1}^n \Pi _{j'=1}^{n} \left( v_{ij'}^{(k)}\right) ^{s_{j'}} \left\{ \widehat{E(\epsilon _{1}^{s_{j'}})} - E\left( \epsilon _{1}^{s_{j'}}\right) \right\} }{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q}=o_p(1). \end{aligned}$$

Similarly for \(1\le t \le q\) and by condition C.5 and the fact that \(P_{W_{-k}^\bot }\) is idempotent,

$$\begin{aligned} \frac{\sum _{i=1}^n II_{31zi}^{\alpha qt} \left( \widehat{II}_{32zi}^{\alpha qt}-II_{32zi}^{\alpha qt}\right) }{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q}=o_p(1), \quad \frac{ \sum _{i=1}^n \left( \widehat{II}_{31zi}^{\alpha qt}-II_{31zi}^{\alpha qt}\right) \cdot \widehat{II}_{32zi}^{\alpha qt}}{\sum _{i=1}^n \sum _{j'=1}^{m_k} \left( u_{ij'}^{(k)}\right) ^q}=o_p(1). \end{aligned}$$

Combining these with the fact that \(\widehat{II}_{31zi}^{\alpha qt} \cdot \widehat{II}_{32zi}^{\alpha qt}-II_{31zi}^{\alpha qt} \cdot II_{32zi}^{\alpha qt}=\left( \widehat{II}_{31zi}^{\alpha qt}-II_{31zi}^{\alpha qt}\right) \cdot \widehat{II}_{32zi}^{\alpha qt}+II_{31zi}^{\alpha qt} \left( \widehat{II}_{32zi}^{\alpha qt}-II_{32zi}^{\alpha qt}\right) \), one has \(\widehat{II}_3^{\alpha qt}-{II}_3^{\alpha qt}=o_p(1)\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Chen, F. & Zhu, L. Estimating moments in ANOVA-type mixed models. Metrika 80, 697–715 (2017). https://doi.org/10.1007/s00184-017-0623-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00184-017-0623-2

Keywords

Navigation