Advertisement

Metrika

, Volume 78, Issue 8, pp 997–1014 | Cite as

Schur properties of convolutions of gamma random variables

  • Farbod Roosta-Khorasani
  • Gábor J. Székely
Article

Abstract

Sufficient conditions for comparing the convolutions of heterogeneous gamma random variables in terms of the usual stochastic order are established. Such comparisons are characterized by the Schur convexity properties of the cumulative distribution function of the convolutions. Some examples of the practical applications of our results are given.

Keywords

Schur-convexity of tails Majorization order Linear combinations Gamma distribution Tail probabilities 

Mathematics Subject Classification

Primary 60E15 Secondary 62E99 

Notes

Acknowledgments

We wish to thank Profs. Milan Merkle and Maochao Xu for their great feedback during the preparation of the text. We would also like to thank the anonymous referee for many valuable comments which helped us improve the presentation and the content of this paper.

References

  1. Amiri L, Khaledi B, Samaniego FJ (2011) On skewness and dispersion among convolutions of independent gamma random variables. Probab Eng Inf Sci 25(01):55–69zbMATHMathSciNetCrossRefGoogle Scholar
  2. Avron H (2010) Counting triangles in large graphs using randomized matrix trace estimation. Workshop on Large-scale Data Mining, Theory and ApplicationsGoogle Scholar
  3. Avron H, Toledo S (2011) Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. JACM 58(2)Google Scholar
  4. Bai Z, Fahey M, Golub G (1996) Some large scale matrix computation problems. J Comput Appl Math 74:71–89zbMATHMathSciNetCrossRefGoogle Scholar
  5. Bakirov NK (1995) Comparison theorems for distribution functions of quadratic forms of gaussian vectors. Theory Probab Appl 40(2):340–348MathSciNetCrossRefGoogle Scholar
  6. Bock ME, Diaconis P, Huffer FW, Perlman MD (1987) Inequalities for linear combinations of gamma random variables. Can J Stat 15:387–395zbMATHMathSciNetCrossRefGoogle Scholar
  7. Boland PJ, El-Neweihi E, Proschan F (1994) Schur properties of convolutions of exponential and geometric random variables. J Multivar Anal 48(1):157–167zbMATHMathSciNetCrossRefGoogle Scholar
  8. Bon J, Pãltãnea E (1999) Ordering properties of convolutions of exponential random variables. Lifetime Data Anal 5(2):185–192zbMATHMathSciNetCrossRefGoogle Scholar
  9. Diaconis P, Perlman MD (1990) Bounds for tail probabilities of weighted sums of independent gamma random variables. Lecture Notes-Monograph Series, pp 147–166Google Scholar
  10. van den Doel K, Ascher U (2011) The chaotic nature of faster gradient descent methods. J Sci Comput. doi: 10.1007/s10915-011-9521-3
  11. Eldar Yonina C, Kutyniok Gitta (2012) Compressed sensing: theory and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Furman E, Landsman Z (2006) Tail variance premium with applications for elliptical portfolio of risks. Astin Bull 36(2):433zbMATHMathSciNetCrossRefGoogle Scholar
  13. Golub GH, Heath M, Wahba G (1979) Generalized cross validation as a method for choosing a good ridge parameter. Technometrics 21:215–223zbMATHMathSciNetCrossRefGoogle Scholar
  14. Haber E, Chung M, Herrmann F (2012) An effective method for parameter estimation with PDE constraints with multiple right-hand sides. SIAM J Optim 22:739–757zbMATHMathSciNetCrossRefGoogle Scholar
  15. Hutchinson MF (1990) A stochastic estimator of the trace of the influence matrix for laplacian smoothing splines. J Comm Stat Simul 19:433–450zbMATHMathSciNetCrossRefGoogle Scholar
  16. Kochar S, Xu M (2010) On the right spread order of convolutions of heterogeneous exponential random variables. J Multivar Anal 101(1):165–176zbMATHMathSciNetCrossRefGoogle Scholar
  17. Kochar S, Xu M (2011) The tail behavior of the convolutions of gamma random variables. J Stat Plan Inference 141(1):418–428zbMATHMathSciNetCrossRefGoogle Scholar
  18. Kochar S, Xu M (2012) Some unified results on comparing linear combinations of independent gamma random variables. Probab Eng Inf Sci 26(03):393–404zbMATHMathSciNetCrossRefGoogle Scholar
  19. Lihong S, Xinsheng Z (2005) Stochastic comparisons of order statistics from gamma distributions. J Multivar Anal 93(1):112–121zbMATHMathSciNetCrossRefGoogle Scholar
  20. Marshall AW, Olkin I (1979) Inequalities: theory of majorization and its applications. Academic, New YorkzbMATHGoogle Scholar
  21. Merkle Milan, Petrović Ljiljana (1994) On schur-convexity of some distribution functions. Publications de l’Institut Mathématique 56(76):111–118Google Scholar
  22. Pečarić JE, Proschan F, Tong YL (1992) Convex functions, partial orderings, and statistical applications, volume 187 of mathematics in science and engineering. Academic Press, New YorkGoogle Scholar
  23. Proschan F (1965) Peakedness of distributions of convex combinations. Ann Math Stat 36:1703–1706zbMATHMathSciNetCrossRefGoogle Scholar
  24. Roosta-Khorasani F, Ascher U (2014) Improved bounds on sample size for implicit matrix trace estimators. Found Comput Math. doi: 10.1007/s10208-014-9220-1
  25. Roosta-Khorasani F, Székely G, Ascher U (2015) Assessing stochastic algorithms for large scale nonlinear least squares problems using extremal probabilities of linear combinations of gamma random variables. SIAM/ASA J Uncertain Quantif 3(1):61–90. doi: 10.1137/14096311X MathSciNetCrossRefGoogle Scholar
  26. Roosta-Khorasani F, van den Doel K, Ascher U (2014a) Data completion and stochastic algorithms for PDE inversion problems with many measurements. Electron Trans Numer Anal 42:177–196Google Scholar
  27. Roosta-Khorasani F, van den Doel K, Ascher U (2014b) Stochastic algorithms for inverse problems involving PDEs and many measurements. SIAM J Sci Comput 36(5):S3–S22Google Scholar
  28. Shapiro A, Dentcheva D, Ruszczynski D (2009) Lectures on stochastic programming: modeling and theory. SIAM, PiladelphiaCrossRefGoogle Scholar
  29. Székely GJ, Bakirov NK (2003) Extremal probabilities for gaussian quadratic forms. Probab Theory Relat Fields 126:184–202zbMATHCrossRefGoogle Scholar
  30. van Leeuwen T, Aravkin S, Herrmann F (2012) Seismic waveform inversion by stochastic optimization. Hindawi Int J Geophys 2011. doi: 10.1155/2011/689041
  31. Young J, Ridzal D (2012) An application of random projection to parameter estimation in partial differential equations. SIAM J Sci Comput 34:A2344–A2365zbMATHMathSciNetCrossRefGoogle Scholar
  32. Yaming Yu et al (2011) Some stochastic inequalities for weighted sums. Bernoulli 17(3):1044–1053zbMATHMathSciNetCrossRefGoogle Scholar
  33. Zhao P (2011) Some new results on convolutions of heterogeneous gamma random variables. J Multivar Anal 102(5):958–976zbMATHCrossRefGoogle Scholar
  34. Zhao P, Balakrishnan N (2009) Mean residual life order of convolutions of heterogeneous exponential random variables. J Multivar Anal 100(8):1792–1801zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of British ColumbiaVancouverCanada
  2. 2.National Science FoundationArlingtonVirginia
  3. 3.Alfréd Rényi Institute of MathematicsHungarian Academy of SciencesBudapestHungary

Personalised recommendations