Metrika

, Volume 78, Issue 3, pp 337–372 | Cite as

Inference for types and structured families of commutative orthogonal block structures

  • Francisco Carvalho
  • João T. Mexia
  • Carla Santos
  • Célia Nunes
Article

Abstract

Models with commutative orthogonal block structure, COBS, have orthogonal block structure, OBS, and their least square estimators for estimable vectors are, as it will be shown, best linear unbiased estimator, BLUE. Commutative Jordan algebras will be used to study the algebraic structure of the models and to define special types of models for which explicit expressions for the estimation of variance components are obtained. Once normality is assumed, inference using pivot variables is quite straightforward. To illustrate this class of models we will present unbalanced examples before considering families of models. When the models in a family correspond to the treatments of a base design, the family is structured. It will be shown how, under quite general conditions, the action of the factors in the base design on estimable vectors, can be studied.

Keywords

Commutative orthogonal block structure Commutative Jordan algebras Estimation Mixed linear models 

Notes

Acknowledgments

The authors would like to thank the anonymous referees for useful comments and suggestions. This work was partially supported by CMA / FCT / UNL, under the project PEst-OE/MAT/UI0297/2014, and by the Center of Mathematics, University of Beira Interior under the project PEst-OE/MAT/UI0212/2014.

References

  1. Caliński T, Kageyama S (2000) Block designs. A randomization approach. Volume I: analysis. Lecture notes in statistics. Springer, BerlinGoogle Scholar
  2. Caliński T, Kageyama S (2003) Block designs. A randomization approach. Volume II: design. Lecture notes in statistics. Springer, BerlinCrossRefGoogle Scholar
  3. Carvalho F, Mexia JT, Oliveira MM (2008) Canonic inference and commutative orthogonal block structure. Discuss Math Prob Stat 28(2):171–181MATHMathSciNetGoogle Scholar
  4. Fonseca M, Mexia JT, Zmyślony R (2003) Estimators and tests for variance components in cross nested orthogonal models. Discuss Math Probab Stat 23:173–201Google Scholar
  5. Fonseca M, Mexia JT, Zmyślony R (2006) Binary operation on Jordan algebras and orthogonal normal models. Linear Algebr Appl 417(1):75–86CrossRefMATHGoogle Scholar
  6. Fonseca M, Mexia JT, Zmyślony R (2007) Jordan algebras, generating pivot variables and orthogonal normal models. J Interdiscip Math 10(2):305–326CrossRefMATHMathSciNetGoogle Scholar
  7. Fonseca M, Mexia JT, Zmyślony R (2008) Inference in normal models with commutative orthogonal block structure. Acta et Commentationes Universitatis Tartunesis de Mathematica 12:3–16MATHGoogle Scholar
  8. Jordan P, von Neumann J, Wigner E (1934) On the algebraic generalization of the quantum mechanical formalism. Ann Math 35(1):29–64CrossRefGoogle Scholar
  9. Kariya T, Kurata H (2004) Generalized least squares. Wiley, New YorkCrossRefMATHGoogle Scholar
  10. Khuri AI, Mathew T, Sinha BK (1998) Statistical tests for mixed linear models. Wiley series in probability and statistics. Wiley, New YorkGoogle Scholar
  11. Lehmann EL, Casella G (2003) Theory of point estimation, 2nd edn. Springer Texts in StatisticsGoogle Scholar
  12. Mejza S (1992) On some aspects of general balance in designed experiments. Statistica 52(2):263–278MATHMathSciNetGoogle Scholar
  13. Mexia JT (1987) Multi-treatment regression designs. Trabalhos de Investigação, No 1. Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de LisboaGoogle Scholar
  14. Mexia JT (1990) Best linear unbiased estimates, duality of \(F\) tests and the Scheff multiple comparison method in presence of controlled heterocedasticity. Comput Stat Data Anal 10:271–281CrossRefMATHMathSciNetGoogle Scholar
  15. Michalski A, Zmyślony R (1996) Testing hypothesis for variance components in mixed linear models. Statistics 27(3–4):297–310CrossRefMATHMathSciNetGoogle Scholar
  16. Moreira EE, Ribeiro AB, Mateus E, Mexia JT, Ottosen LM (2005a) Regressional modelling of electrodialytic removal of Cu, Cr and As from CCA timber waste: application to sawdust. Wood Sci Technol 39(4):291–309CrossRefGoogle Scholar
  17. Moreira EE, Mexia JT, Ribeiro AB, Mateus E, Ottosen LM (2005b) Regressional modelling of electrodialytic removal of Cu, Cr and As from CCA timber waste: application to wood chips. Listy Biometryczne 42(1):11–23Google Scholar
  18. Moreira E, Mexia JT (2007) Multiple regression models with cross nested orthogonal base model. In: Proceedings of the 56th session of the ISI 2007—International Statistical Institute, LisboaGoogle Scholar
  19. Moreira E (2008) Família estruturada de modelos com base ortogonal: teoria e aplicações, Ph.D. Thesis, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa (in Portuguese)Google Scholar
  20. Nelder JA (1965a) The analysis of randomized experiments with orthogonal block structure. I. Block structure and the null analysis of variance. Proc R Soc Lond Ser A Math Phys Sci 283(1393):147–162CrossRefMATHMathSciNetGoogle Scholar
  21. Nelder JA (1965b) The analysis of randomized experiments with orthogonal block structure. II. Treatment, structure and the general analysis of variance. Proc R Soc Lond Ser A Math Phys Sci 283(1393):163–178CrossRefMathSciNetGoogle Scholar
  22. Schott JR (1997) Matrix analysis for statistics. Wiley series in probability and statistics. Wiley, New YorkGoogle Scholar
  23. Seely J (1970a) Linear spaces and unbiased estimators. Ann Math Stat 41(5):1725–1734CrossRefMATHMathSciNetGoogle Scholar
  24. Seely J (1970b) Linear spaces and unbiased estimators. Application to a mixed linear model. Ann Math Stat 41(5):1735–1748CrossRefMATHMathSciNetGoogle Scholar
  25. Seely J (1971) Quadratic subspaces and completeness. Ann Math Stat 42(2):710–721CrossRefMATHMathSciNetGoogle Scholar
  26. Seely J, Zyskind G (1971) Linear spaces and minimum variance unbiased estimation. Ann Math Stat 42(2):691–703CrossRefMATHMathSciNetGoogle Scholar
  27. Scheffé H (1959) The analysis of variance, Wiley series in probability and statistics. Wiley, New YorkGoogle Scholar
  28. VanLeeuwen DM, Seely JF, Birkes DS (1998) Sufficient conditions for orthogonal designs in mixed linear models. J Stat Plan Inference 73(1–2):373–389CrossRefMATHMathSciNetGoogle Scholar
  29. VanLeeuwen DM, Birkes DS, Seely JF (1999) Balance and orthogonality in designs for mixed classification models. Ann Stat 27(6):1927–1947CrossRefMATHMathSciNetGoogle Scholar
  30. Zmyślony R (1980) A characterization of Best Linear Unbiased Estimators in the general linear model. Lecture Notes in Statistics, vol 2. Springer, pp 365–373Google Scholar
  31. Zmyślony R, Drygas H (1992) Jordan algebras and bayesian quadratic estimation of variance components. Linear Algebra Appl 168:259–275CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Francisco Carvalho
    • 1
    • 2
  • João T. Mexia
    • 1
    • 3
  • Carla Santos
    • 4
  • Célia Nunes
    • 5
    • 6
  1. 1.CMA - Centro de Matemática e Aplicações, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  2. 2.Unidade Departamental de Matemática e FísicaInstituto Politécnico de TomarTomarPortugal
  3. 3.Departamento de Matemática, Faculdade de Ciências e TecnologiaUniversidade Nova de LisboaCaparicaPortugal
  4. 4.Departamento de Matemática e Ciências FísicasEscola Superior de Tecnologia e Gestão, Instituto Politécnico de BejaBejaPortugal
  5. 5.Departamento de Matemática, Faculdade de CiênciasUniversidade da Beira InteriorCovilhãPortugal
  6. 6.Centro de MatemáticaUniversidade da Beira InteriorCovilhãPortugal

Personalised recommendations