, Volume 75, Issue 1, pp 109–126 | Cite as

Nonparametric density estimation for symmetric distributions by contaminated data

  • Rostyslav Maiboroda
  • Olena Sugakova


A semiparametric two-component mixture model is considered, in which the distribution of one (primary) component is unknown and assumed symmetric. The distribution of the other component (admixture) is known. We consider three estimates for the pdf of primary component: a naive one, a symmetrized naive estimate and a symmetrized estimate with adaptive weights. Asymptotic behavior and small sample performance of the estimates are investigated. Some rules of thumb for bandwidth selection are discussed.


Asymptotic normality Finite mixture model Symmetric distribution Kernel density estimate Rule of thumb MISE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bordes L, Delmas C, Vandekerkhove P (2006) Semiparametric estimation of a two-component mixture model where one component is known. Scand J Stat 33: 733–752CrossRefMathSciNetzbMATHGoogle Scholar
  2. Borovkov AA (1998) Mathematical statistics. Gordon and Breach Science Publishers, AmsterdamzbMATHGoogle Scholar
  3. Bowman AW (1984) An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71: 353–360CrossRefMathSciNetGoogle Scholar
  4. Chacón JE, Montanero J, Nogales AG (2008) Bootstrap bandwidth selection using an h-dependent pilot bandwidth. Scand J Stat 35: 139–157CrossRefzbMATHGoogle Scholar
  5. Devroye L, Györfi L, Lugosi G (1996) A probabilistic theory of pattern recognition. Springer, New YorkzbMATHGoogle Scholar
  6. Devroye L (1997) Universal smoothing factor selection in density estimation: theory and practice (with discussion). Test 6: 223–320CrossRefMathSciNetzbMATHGoogle Scholar
  7. Efron B, Tibshirani R, Storey JD, Tusher V (2001) Empirical Bayes analysis of a microarray experiment. J Am Stat Assoc 96: 1151–1160CrossRefMathSciNetzbMATHGoogle Scholar
  8. Hall P (1990) Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems. J Multivar Anal 32: 177–203CrossRefzbMATHGoogle Scholar
  9. Hall P (1992) Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann Stat 20: 675–694CrossRefzbMATHGoogle Scholar
  10. Hall P, Marron JS, Park BU (1992) Smoothed cross-validation. Probab Theor Relat Fields 92: 1–20CrossRefMathSciNetzbMATHGoogle Scholar
  11. Hardle W, Muller M, Sperlich S, Werwatz A (2004) Nonparametric and semiparametric models. Springer, BerlinCrossRefGoogle Scholar
  12. Hedenfalk I, Duggan D, Chen YD, Radmacher M, Bittner M, Simon R, Meltzer P, Gusterson B, Esteller M, Kallioniemi OP et al (2001) Gene-expression profiles in hereditary breast cancer. N Engl J Med 344: 539–548CrossRefGoogle Scholar
  13. Ho YHS, Lee SMS (2008) Iterated bootstrap-t confidence intervals for density functions. Scand J Stat 35: 295–308CrossRefMathSciNetzbMATHGoogle Scholar
  14. Ibragimov IA, Khasminsky RZ (1979) Asymptotic estimation theory. Nauka, Moscow (in Russian)Google Scholar
  15. Kraft CH, Lepage Y, van Eeden C (1985) Estimation of a symmetric density function. Commun Stat A Theor Methods 14: 273–288CrossRefzbMATHGoogle Scholar
  16. Liu K, Tsokos CP (2001) Kernel estimates of symmetric density function. Int J Appl Math 6: 23–34MathSciNetzbMATHGoogle Scholar
  17. Macdonald P, Du J (2008) mixdist: finite mixture distribution models. R package version 0.5-2.
  18. Maiboroda R, Sugakova O (2010) Generalized estimating equations for symmetric distributions observed with admixture. Commun Stat Theor Method (to appear)Google Scholar
  19. Meloche J (1991) Estimation of a symmetric density. Canad J Stat 19: 151–164CrossRefMathSciNetzbMATHGoogle Scholar
  20. Pearson K (1894) Contribution to the mathematical theory of evolution. Phil Trans Roy Soc A 185: 71–110CrossRefzbMATHGoogle Scholar
  21. Robin S, Bar-Hen A, Daudin J, Pierre L (2007) A semi-parametric approach for mixture models: application to local false discovery rate estimation. Comput Statist Data Anal 51: 5483–5493CrossRefMathSciNetzbMATHGoogle Scholar
  22. Rudemo M (1982) Empirical choice of histograms and kernel density estimators. Scand J Stat 9: 65–78MathSciNetzbMATHGoogle Scholar
  23. Shao J (1998) Mathematical statistics. Springer, New YorkGoogle Scholar
  24. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman & Hall, LondonzbMATHGoogle Scholar
  25. Storey JD, Tibshirani R (2003) Statistical significance for genome-wide studies. Proc Natl Acad Sci 100: 9440–9445CrossRefMathSciNetzbMATHGoogle Scholar
  26. Sugakova O (2009) Estimation of location parameter by observations with admixture. Teorija Imovirnosti ta Matematychna Statystyka 80: 81–91Google Scholar
  27. Sugakova O (2010) Density estimation by observations with admixture. Theory of Stochastic Processes (to appear)Google Scholar
  28. Wand MP, Jones MC (1995) Kernel smoothing. Chapman & Hall, LondonzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Probability and Statistics, Faculty of Mechanics and MathematicsKyiv National UniversityKyivUkraine

Personalised recommendations