Metrika

, Volume 73, Issue 2, pp 211–230 | Cite as

Estimation and testing for a Poisson autoregressive model

Article

Abstract

This article considers statistical inference for a Poisson autoregressive model. A condition for ergodicity and a necessary and sufficient condition for the existence of moments are given. Asymptotics for maximum likelihood estimator and weighted least squares estimators with estimated weights or known weights of the parameters are established. Testing conditional heteroscedasticity and testing the parameters under a simple ordered restriction are noted. A simulation study is also given.

Keywords

Asymptotics Ergodicity Maximum likelihood estimator Poisson autoregressive model Test Weighted least squares estimator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alzaid AA, Al-Osh M (1990) An integer-valued pth-order autoregressive structure (INAR(p)) process. J Appl Prob 27: 314–324MATHCrossRefMathSciNetGoogle Scholar
  2. Amemiya T (1985) Advanced econometrics. Harvard University Press, CambridgeGoogle Scholar
  3. Bose A, Mukherjee K (2003) Estimating the ARCH parameters by solving linear equations. J Time Ser Anal 24: 127–136MATHCrossRefMathSciNetGoogle Scholar
  4. Chandra SA, Taniguchi M (2001) Estimating functions for nonlinear time series models. Ann Inst Stat Math 53: 125–141MATHCrossRefMathSciNetGoogle Scholar
  5. Chandra SA, Taniguchi M (2006) Minimum α-divergence estimation for ARCH nodels. J Time Ser Anal 27: 19–39MATHCrossRefMathSciNetGoogle Scholar
  6. Davis RA, Dunsmuir WTM, Wang Y (1999) Modelling time series of count data. In: Ghosh S(eds) Asymptotics, nonparametrics, and time series. Marcel Dekker, New York, pp 63–114Google Scholar
  7. Davis RA, Dunsmuir WTM, Streett SB (2003) Observation-driven models for Poisson counts. Biometrika 90: 777–790CrossRefMathSciNetGoogle Scholar
  8. Engle RF (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50: 987–1007MATHCrossRefMathSciNetGoogle Scholar
  9. Ferland R, Latour A, Oraichi D (2006) Integer-valued GARCH process. J Time Ser Anal 27: 923–942MATHCrossRefMathSciNetGoogle Scholar
  10. Gradshteyn IS, Ryzhik IM (2007) Table of integrals, series, and products, 7th edn. Academic Press, San DiegoGoogle Scholar
  11. Hall P, Hede CC (1980) Martingale limit theory and its application. Academic Press, New YorkMATHGoogle Scholar
  12. Hernández-Lerma O, Lasserre JB (2003) Markov chains and invariant probabilities. Birkhäuser, BaselMATHGoogle Scholar
  13. Horváth L, Liese F (2004) L p-estimators in ARCH models. J Stat Plan Inference 119: 277–309MATHCrossRefGoogle Scholar
  14. Ling S (2007) A double AR(p) model: structure and estimation. Stat Sinica 17: 161–175MATHGoogle Scholar
  15. Meyn SP, Tweedie RL (1993) Markov chains and stochastic stability. Springer, New YorkMATHGoogle Scholar
  16. Silva I (2005) Contributions to the analysis of discrete-valued time series. PhD dissertation, Departamento de Matemática Aplicada, Universidade do Porto, PortugalGoogle Scholar
  17. Silvapulle MJ, Silvapulle P (1995) A score test against one-sided alternatives. J Am Stat Assoc 90: 342–349MATHCrossRefMathSciNetGoogle Scholar
  18. Stout WF (1974) Almost sure convergence. Academic Press, New YorkMATHGoogle Scholar
  19. Straumann D (2005) Estimation in conditionally heteroscedastic time series models. Springer, New YorkGoogle Scholar
  20. Tjøstheim D (1986) Estimation in nonlinear time series models. Stoch Process Appl 21: 251–273CrossRefGoogle Scholar
  21. Wang D, Song L, Shi N (2004) Estimation and testing for the parameters of ARCH(q) under ordered restriction. J Time Ser Anal 25: 483–499MATHCrossRefMathSciNetGoogle Scholar
  22. Weiß CH (2008) Thinning operations for modeling time series of counts—a survey. Adv Stat Anal 92: 319–341CrossRefGoogle Scholar
  23. Weiss AA (1986) Asymptotic theory for ARCH models: estimation and testing. Econom Theory 2: 107–131CrossRefGoogle Scholar
  24. Zheng H, Basawa IV, Datta S (2006) Inference for pth-order random coefficient integer-valued autoregressive processes. J Time Ser Anal 27: 411–440MATHCrossRefMathSciNetGoogle Scholar
  25. Zhu F, Wang D (2008) Local estimation in AR models with nonparametric ARCH errors. Comm Stat Theory Methods 37: 1591–1609MATHCrossRefGoogle Scholar
  26. Zhu F, Wang D (2009) Diagnostic checking integer-valued ARCH(p) models using conditional residual autocorrelations. Manuscript, Jilin University, ChangchunGoogle Scholar
  27. Zhu F, Wang D, Li F, Li H (2008) Empirical likelihood inference for an integer-valued ARCH(p) model (in Chinese). J Jilin Univ Sci 46: 1042–1048MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.School of MathematicsJilin UniversityChangchunChina

Personalised recommendations