Advertisement

Metrika

, Volume 63, Issue 2, pp 207–213 | Cite as

On the distribution of the desirability index using Harrington’s desirability function

  • Heike TrautmannEmail author
  • Claus Weihs
Original Article

Abstract

The concept of desirability is a means for complexity reduction of multivariate quality optimization. This paper provides a theoretical breakthrough regarding desirability indices, which application fields were formerly limited primarily by the lack of its distribution. Focussed are the distributions of Harrington’s desirability functions and different types of the desirability index.

Keywords

Desirability index Desirability Function Multicriteria optimization Double lognormal distribution Geometric mean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averill AF., Ingram JM., Nolan RF. (2001). Optimising the selection of metal cleaning processes or cleaning agents using desirability functions. Trans Inst Metal Finishing 79(4):123–128Google Scholar
  2. Ben-Gal I., Bukchin J. (2002). The ergonomic design of workstations using virtual manufacturing and response surface methodology. IEEE Trans 34:375–391CrossRefGoogle Scholar
  3. Castillo ED., Montgomery DC., McCarville DR. (1996). Modified desirability functions for multiple response optimization. J Qual Technol 28(3):337–344Google Scholar
  4. Derringer GC., Suich D. (1980). Simultaneous optimization of several response variables. J Qual Technol 12(4):214–219Google Scholar
  5. Harrington J. (1965). The desirability function. Ind Qual Control 21(10):494–498Google Scholar
  6. Holland B., Ahsanullah M. (1989). Further results on the distribution of Meinhold and Singpurwalla. Am Stat 43(4):216–219CrossRefGoogle Scholar
  7. Johnson NL., Kotz S., Balakrishnan N. (1994). Continuous univariate distributions vol 1, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  8. Kim K-J., Lin DKJ. (2000). Simultaneous optimization of mechanical properties of steel by maximizing desirability functions. Appl Stat 49(3):311–326zbMATHMathSciNetGoogle Scholar
  9. Mood AM., Graybill FA., Boes DC. (1974). Introduction to the theory of statistics 3rd edn. McGraw-Hill, SingaporezbMATHGoogle Scholar
  10. Schwartz SC., Yeh YS. (1982). On the distribution function and moments of power sums with log-normal components. Bell Syst Tech J 61(7):1441–1462zbMATHGoogle Scholar
  11. Steuer D. (2000). An improved optimisation procedure for desirability indices. Dortmund University, GermanyGoogle Scholar
  12. Trautmann H. (2004a). Qualitätskontrolle in der Industrie anhand von Kontrollkarten fünschbarkeitsindizes – Anwendungsfeld Lagerverwaltung. Dissertation, http://hdl.handle.net/2003/2794Google Scholar
  13. Trautmann H. (2004b). The desirability index as an instrument for multivariate process control. Dortmund University, GermanyGoogle Scholar
  14. Trautmann H., Weihs C. (2004). Uncertainty of the optimum influence factor levels in multicriteria optimization using the concept of desirability. Technical Report 23/04, SFB 475, Dortmund University, GermanyGoogle Scholar
  15. Tuyev VV., Fedchenko PP. (1997). The study of soil humus changes with the harrington “desirability” function. Mapp Sci Remote Sens 34(4):264–272Google Scholar
  16. Weber H., Weihs C. (2003). On the distribution of the desirability index using harrington’s desirability function. Statistics Department, Dortmund University, GermanyGoogle Scholar
  17. Wu W., Cui GH., Lu B. (2000). Optimization of multiple variables: application of central composite design and overall desirability. Chin Pharm J - Beijing 35(8):530–532Google Scholar

Copyright information

© Springer Verlag 2005

Authors and Affiliations

  1. 1.Department of Computer-Aided StatisticsUniversity of DortmundDortmundGermany

Personalised recommendations