Value dividends, the Harsanyi set and extensions, and the proportional Harsanyi solution

  • Manfred BesnerEmail author
Original Paper


A new concept for TU-values, called value dividends, is introduced. Similar to Harsanyi dividends, value dividends are defined recursively and provide new characterizations of values from the Harsanyi set. In addition, we generalize the Harsanyi set where each of the TU-values from this set is defined by the distribution of the Harsanyi dividends via sharing function systems and give an axiomatic characterization. As a TU value from the generalized Harsanyi set, we present the proportional Harsanyi solution, a new proportional solution concept. A new characterization of the Shapley value is proposed as a side effect. None of our characterizations uses additivity.


TU-game Value dividends (Generalized) Harsanyi set Weighted Shapley values (Proportional) Harsanyi solution Sharing function systems 



We are grateful to André Casajus, Winfried Hochstättler, and two anonymous referees for their helpful comments and suggestions.


  1. Arin J (2013) Monotonic core solutions: beyond Young’s theorem. Int J Game Theory 42(2):325–337CrossRefGoogle Scholar
  2. Banzhaf JF (1965) Weighted voting does not work: a mathematical analysis. Rutgers Law Rev 19:317–343Google Scholar
  3. Béal S, Ferriéres S, Rémila E, Solal P (2018) The proportional Shapley value and applications. Games Econ Behav 108:93–112CrossRefGoogle Scholar
  4. Besner M (2016) Lösungskonzepte kooperativer Spiele mit Koalitionsstrukturen. Master’s thesis, Fern-Universität Hagen, HagenGoogle Scholar
  5. Besner M (2019) Axiomatizations of the proportional Shapley value. Theory Decis 86(2):161–183CrossRefGoogle Scholar
  6. Billot A, Thisse JF (2005) How to share when context matters: the Möbius value as a generalized solution for cooperative games. J Math Econ 41(8):1007–1029CrossRefGoogle Scholar
  7. Casajus A (2011) Differential marginality, van den Brink fairness, and the Shapley value. Theory Decis 71(2):163–174CrossRefGoogle Scholar
  8. Casajus A (2017) Weakly balanced contributions and solutions for cooperative games. Oper Res Lett 45(6):616–619CrossRefGoogle Scholar
  9. Casajus A (2018) Symmetry, mutual dependence, and the weighted Shapley values. J Econ Theory 178:105–123CrossRefGoogle Scholar
  10. Derks J, Haller H, Peters H (2000) The selectope for cooperative games. Int J Game Theory 29(1):23–38CrossRefGoogle Scholar
  11. Dragan IC (1992) Multiweighted Shapley values and random order values. University of Texas at ArlingtonGoogle Scholar
  12. Feldman B (1999) The proportional value of a cooperative game. Manuscript. Scudder Kemper Investments, ChicagoGoogle Scholar
  13. Gangolly JS (1981) On joint cost allocation: independent cost proportional scheme (ICPS) and its properties. J Account Res 19:299–312CrossRefGoogle Scholar
  14. Hammer PL, Peled UN, Sorensen S (1977) Pseudo-Boolean functions and game theory. I. Core elements and Shapley value. Cahiers CERO 19:159–176Google Scholar
  15. Harsanyi JC (1959) A bargaining model for cooperative \(n\)-person games. In: Tucker AW, Luce RD (eds) Contributions to the theory of games IV. Princeton University Press, Princeton, pp 325–355Google Scholar
  16. Hart S, Mas-Colell A (1989) Potential, value, and consistency. Econometrica (J Econ Soc) 57:589–614CrossRefGoogle Scholar
  17. Kalai E, Samet D (1987) On weighted Shapley values. Int J Game Theory 16(3):205–222CrossRefGoogle Scholar
  18. Megiddo N (1974) On the nonmonotonicity of the bargaining set, the kernel and the nucleolus of game. SIAM J Appl Math 27(2):355–358CrossRefGoogle Scholar
  19. Moriarity S (1975) Another approach to allocating joint costs. Account Rev 50(4):791–795Google Scholar
  20. Myerson RB (1980) Conference structures and fair allocation rules. Int J Game Theory 9(3):169–182CrossRefGoogle Scholar
  21. Nowak AS, Radzik T (1995) On axiomatizations of the weighted Shapley values. Games Econ Behav 8(2):389–405CrossRefGoogle Scholar
  22. Ortmann KM (2000) The proportional value for positive cooperative games. Math Methods Oper Res 51(2):235–248CrossRefGoogle Scholar
  23. Shapley LS (1953a) Additive and non-additive set functions. Princeton University, PrincetonGoogle Scholar
  24. Shapley LS (1953b) A value for \(n\)-person games. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games, vol 2. Princeton University Press, Princeton, pp 307–317Google Scholar
  25. van den Brink R (2001) An axiomatization of the Shapley value using a fairness property. Int J Game Theory 30(3):309–319CrossRefGoogle Scholar
  26. van den Brink R, van der Laan G, Vasil’ev VA (2014) Constrained core solutions for totally positive games with ordered players. Int J Game Theory 43(2):351–368Google Scholar
  27. van den Brink R, Levínský R, Zelený M (2015) On proper Shapley values for monotone TU-games. Int J Game Theory 44(2):449–471CrossRefGoogle Scholar
  28. Vasil’ev VA (1975) The Shapley value for cooperative games of bounded polynomial variation. Optim. Vyp 17:5–27Google Scholar
  29. Vasil’ev VA (1978) Support function of the core of a convex game. Optim. Vyp 21:30–35Google Scholar
  30. Vasil’ev VA (1981) On a class of imputations in cooperative games. Sov. Math. Dokl. 23:53–57Google Scholar
  31. Vasil’ev V, van der Laan G (2002) The Harsanyi set for cooperative TU-games. Sib Adv Math 12:97–125Google Scholar
  32. Vorob’ev NN, Liapunov A (1998) The proper Shapley value. Game Theory Appl 4:155–159Google Scholar
  33. Young HP (1985) Monotonic solutions of cooperative games. Int J Game Theory 14(2):65–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Geomatics, Computer Science and Mathematics, HFT StuttgartUniversity of Applied SciencesStuttgartGermany

Personalised recommendations