Advertisement

International Journal of Game Theory

, Volume 48, Issue 1, pp 157–179 | Cite as

The core of roommate problems: size and rank-fairness within matched pairs

  • Paula Jaramillo
  • Çaǧatay Kayı
  • Flip KlijnEmail author
Original Paper
  • 155 Downloads

Abstract

This paper deals with roommate problems (Gale and Shapley, Am Math Mon 69(1):9–15, 1962) that are solvable, i.e., have a non-empty core (set of stable matchings). We study rank-fairness within pairs of stable matchings and the size of the core by means of maximal and average rank gaps. We provide upper bounds in terms of maximal and average disagreements in the agents’ rankings. Finally, we show that most of our bounds are tight.

Keywords

Matching Roommate problem Stability Core Rank-fairness Rank gap Bound 

JEL Classification

C78 

References

  1. Alcalde J (1994) Exchange-proofness or divorce-proofness? Stability in one-sided matching markets. Econ Design 1(1):275–287CrossRefGoogle Scholar
  2. Bogomolnaia A, Jackson MO (2002) The stability of hedonic coalition structures. Games Econ Behav 38(2):201–230CrossRefGoogle Scholar
  3. Chung K-S (2000) On the existence of stable roommate matchings. Games Econ Behav 33(2):206–230CrossRefGoogle Scholar
  4. Demange G, Wooders M (2004) Group formation in economics: networks, clubs and coalitions. Cambridge University Press, CambridgeGoogle Scholar
  5. Diamantoudi E, Miyagawa E, Xue L (2004) Random paths to stability in the roommate problem. Games Econ Behav 48(1):18–28CrossRefGoogle Scholar
  6. Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Mon 69(1):9–15CrossRefGoogle Scholar
  7. Gudmundsson J (2014) When do stable roommate matchings exist? A review. Rev Econ Design 18(2):151–161CrossRefGoogle Scholar
  8. Gusfield D, Irving R (1989) The stable marriage problem: structure and algorithms. MIT Press, BostonGoogle Scholar
  9. Holzman R, Samet D (2014) Matching of like rank and the size of the core in the marriage problem. Games Econ Behav 88:277–285CrossRefGoogle Scholar
  10. Irving RW (1985) An efficient algorithm for the stable roommates problem. J Algorithms 6:577–595CrossRefGoogle Scholar
  11. Jackson MO (2008) Social and economic networks. Princeton University Press, PrincetonGoogle Scholar
  12. Jackson MO, Watts A (2002) The evolution of social and economic networks. J Econ Theory 106(2):265–295CrossRefGoogle Scholar
  13. Klaus B, Klijn F (2010) Smith and Rawls share a room: stability and medians. Soc Choice Welf 35(4):647–667CrossRefGoogle Scholar
  14. Knuth DE (1976) Mariages stables et leurs relations avec d’autres problèmes combinatoires. Les Presses de l’Université de Montréal, MontréalGoogle Scholar
  15. Manlove D (2013) Algorithmics of matching under preferences. Series on Theoretical Computer Science, vol 2. World Scientific Publishing, SingaporeGoogle Scholar
  16. Pittel B (1993) The “stable roommates” problem with random preferences. Ann Prob 21(3):1441–1477CrossRefGoogle Scholar
  17. Roth AE, Sotomayor MAO (1990) Two-sided matching: a study in game-theoretic modeling and analysis. econometric society monograph series. Cambridge University Press, New YorkCrossRefGoogle Scholar
  18. Tan J (1991) A necessary and sufficient condition for the existence of a complete stable matching. J Algorithms 12(1):154–178CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidad de Los AndesBogotáColombia
  2. 2.Universidad del RosarioBogotáColombia
  3. 3.Institute for Economic Analysis (CSIC) and Barcelona GSEBarcelonaSpain

Personalised recommendations