International Journal of Game Theory

, Volume 44, Issue 4, pp 835–868 | Cite as

Characterization of monotonic rules in minimum cost spanning tree problems

Article

Abstract

We provide, in minimum cost spanning tree problems, a general framework to identify the family of rules satisfying monotonicity over cost and population. We also prove that the set of allocations induced by the family coincides with the so-called irreducible core, that results from decreasing the cost of the arcs as much as possible, without reducing the minimal cost.

Keywords

Cost sharing Minimum cost spanning tree problems Monotonicity Irreducible core 

References

  1. Aarts H, Driessen T (1993) The irreducible core of a minimum cost spanning tree game. Math Methods Oper Res 38:163–174MATHMathSciNetCrossRefGoogle Scholar
  2. Bergantiños G, Gómez-Rúa M (2010) Minimum cost spanning tree problems with groups. Econ Theory 43:227–262MATHCrossRefGoogle Scholar
  3. Bergantiños G, Gómez-Rúa M (2014) An axiomatic approach in minimum cost spanning tree problems with groups. Ann Oper Res. doi:10.1007/s10479-012-1251-x
  4. Bergantiños G, Kar A (2010) On obligation rules for minimum cost spanning tree problems. Games Econ Behav 69:224–237MATHCrossRefGoogle Scholar
  5. Bergantiños G, Lorenzo L (2004) A non-cooperative approach to the cost spanning tree problem. Math Methods Oper Res 59:393–403MATHMathSciNetCrossRefGoogle Scholar
  6. Bergantiños G, Lorenzo L, Lorenzo-Freire S (2010) The family of cost monotonic and cost additive rules in minimum cost spanning tree problems. Soc Choice Welfare 34:695–710MATHCrossRefGoogle Scholar
  7. Bergantiños G, Lorenzo L, Lorenzo-Freire S (2011) A generalization of obligation rules for minimum cost spanning tree problems. Eur J Oper Res 211:122–129MATHCrossRefGoogle Scholar
  8. Bergantiños G, Lorenzo-Freire S (2008a) Optimistic weighted Shapley rules in minimum cost spanning tree problems. Eur J Oper Res 185:289–298MATHCrossRefGoogle Scholar
  9. Bergantiños G, Lorenzo-Freire S (2008b) A characterization of optimistic weighted Shapley rules in minimum cost spanning tree problems. Econ Theory 35:523–538MATHCrossRefGoogle Scholar
  10. Bergantiños G, Vidal-Puga J (2007) A fair rule in minimum cost spanning tree problems. J Econ Theory 137(1):326–352MATHCrossRefGoogle Scholar
  11. Bergantiños G, Vidal-Puga J (2009) Additivity in minimum cost spanning tree problems. J Math Econ 45(1–2):38–42MATHCrossRefGoogle Scholar
  12. Bergantiños G, Vidal-Puga J (2010) Realizing fair outcomes in minimum cost spanning tree problems through non-cooperative mechanisms. Eur J Oper Res 201:811–820MATHCrossRefGoogle Scholar
  13. Bird CG (1976) On cost allocation for a spanning tree: a game theoretic approach. Networks 6:335–350MATHMathSciNetCrossRefGoogle Scholar
  14. Bogomolnaia A, Moulin H (2010) Sharing a minimal cost spanning tree: beyond the Folk solution. Games Econ Behav 69:238–248MATHMathSciNetCrossRefGoogle Scholar
  15. Branzei R, Moretti S, Norde H, Tijs S (2004) The P-value for cost sharing in minimum cost spanning tree situations. Theory Decis 56:47–61MATHMathSciNetCrossRefGoogle Scholar
  16. Dutta B, Kar A (2004) Cost monotonicity, consistency and minimum cost spanning tree games. Games Econ Behav 48:223–248MATHMathSciNetCrossRefGoogle Scholar
  17. Feltkamp V, Tijs S, Muto S (1994) On the irreducible core and the equal remaining obligation rule of minimum cost extension problems. Mimeo, Tilburg University, TilburgGoogle Scholar
  18. Granot D, Huberman G (1981) Minimum cost spanning tree games. Math Prog 21:1–18MATHMathSciNetCrossRefGoogle Scholar
  19. Hernández P, Peris JE, Silva-Reus JA (2013) Strategic sharing of a costly network. Working paperGoogle Scholar
  20. Hougaard JL, Tvede M (2012) Truth-telling and Nash equilibria in minimum cost spanning tree models. Eur J Oper Res 222:566–570MATHMathSciNetCrossRefGoogle Scholar
  21. Kar A (2002) Axiomatization of the Shapley value on minimum cost spanning tree games. Games Econ Behav 38:265–277MATHMathSciNetCrossRefGoogle Scholar
  22. Kruskal J (1956) On the shortest spanning subtree of a graph and the traveling salesman problem. Proc Am Math Soc 7:48–50MATHMathSciNetCrossRefGoogle Scholar
  23. Lorenzo L, Lorenzo-Freire S (2009) A characterization of Kruskal sharing rules for minimum cost spanning tree problems. Int J Game Theory 38:107–126MATHMathSciNetCrossRefGoogle Scholar
  24. Megiddo N (1978) Computational complexity and the game theory approach to cost allocation for a tree. Math Oper Res 3:189–196MATHMathSciNetCrossRefGoogle Scholar
  25. Norde H, Moretti S, Tijs S (2004) Minimum cost spanning tree games and population monotonic allocation schemes. Eur J Oper Res 154:84–97MATHMathSciNetCrossRefGoogle Scholar
  26. Tijs S, Branzei R, Moretti S, Norde H (2006) Obligation rules for minimum cost spanning tree situations and their monotonicity properties. Eur J Oper Res 175:121–134MATHMathSciNetCrossRefGoogle Scholar
  27. Trudeau C (2012) A new stable and more responsive solution for minimum cost spanning tree problems. Games Econ Behav 75:402–412MATHMathSciNetCrossRefGoogle Scholar
  28. Trudeau C (2014) Characterizations of the cycle-complete and folk solutions for minimum cost spanning tree problems. Soc Choice Welfare 42(4):941–957. doi:10.1007/s00355-013-0759-6 MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Universidade de VigoVigoSpain

Personalised recommendations