International Journal of Game Theory

, Volume 43, Issue 1, pp 1–11 | Cite as

Collusion, quarrel, and the Banzhaf value

  • André Casajus
Original Paper


We provide new, concise characterizations of the Banzhaf value on a fixed player set employing just the standard dummy player property and one of the collusion properties suggested by Haller (Int J Game Theory 23:261–281, 1994) and Malawski (Int J Game Theory 31:47–67, 2002). Within these characterizations, any of the collusion properties can be replaced by additivity and the quarrel property due to the latter author.


Banzhaf value Symmetry Collusion Proxy Association  Distrust Quarrel 

JEL Classification




We are indebted to Frank Huettner for helpful discussions on the matter.


  1. Alonso-Meijide JM, lvarez-Mozos M, Fiestras-Janeiro MG (2012) Notes on a comment on 2-efficiency and the Banzhaf value. Appl Math Lett 25(7):1098–1100CrossRefGoogle Scholar
  2. Banzhaf JF (1965) Weighted voting does not work: a mathematical analysis. Rutgers Law Rev 19:317–343Google Scholar
  3. Casajus A (2010) Amalgamating players, symmetry, and the Banzhaf value. Working paper 442. IMW Institute of Mathematical Economics, Bielefeld University, GermanyGoogle Scholar
  4. Casajus A (2011) Marginality, differential marginality, and the Banzhaf value. Theory Decis 71(3):365–372CrossRefGoogle Scholar
  5. Casajus A (2012) Amalgamating players, symmetry, and the Banzhaf value. Int J Game Theory 41(3): 497–515Google Scholar
  6. Dubey P, Einy E, Haimanko O (2005) Compound voting and the Banzhaf index. Games Econ Behav 51:20–30CrossRefGoogle Scholar
  7. Feltkamp V (1995) Alternative axiomatic characterizations of the Shapley and the Banzhaf values. Int J Game Theory 24:179–186CrossRefGoogle Scholar
  8. Haller H (1994) Collusion properties of values. Int J Game Theory 23:261–281CrossRefGoogle Scholar
  9. Laruelle A, Valenciano F (2001) Shapley-Shubik and Banzhaf indices revisited. Math Oper Res 26(1): 89–104Google Scholar
  10. Lehrer E (1988) An axiomatization of the Banzhaf value. Int J Game Theory 17(2):89–99CrossRefGoogle Scholar
  11. Malawski M (2002) Equal treatment, symmetry and Banzhaf value axiomatizations. Int J Game Theory 31:47–67CrossRefGoogle Scholar
  12. Nowak AS (1997) On an axiomatization of the Banzhaf value without the additivity axiom. Int J Game Theory 26:137–141CrossRefGoogle Scholar
  13. Owen G (1975) Multilinear extensions and the Banzhaf value. Naval Res Logist Q 22:741–750CrossRefGoogle Scholar
  14. Shapley LS (1953) A value for \(n\)-person games. In: Kuhn H, Tucker A (eds) Contributions to the theory of games, vol II. Princeton University Press, Princeton, pp 307–317Google Scholar
  15. Young HP (1985) Monotonic solutions of cooperative games. Int J Game Theory 14:65–72CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.LSI Leipziger Spieltheoretisches InstitutLeipzigGermany
  2. 2.Wirtschaftswissenschaftliche FakultätUniversität LeipzigLeipzigGermany

Personalised recommendations