International Journal of Game Theory

, Volume 42, Issue 4, pp 777–788 | Cite as

Algorithms for lattice games

Article
  • 283 Downloads

Abstract

This paper provides effective methods for the polyhedral formulation of impartial finite combinatorial games as lattice games (Guo et al. Oberwolfach Rep 22: 23–26, 2009; Guo and Miller, Adv Appl Math 46:363–378, 2010). Given a rational strategy for a lattice game, a polynomial time algorithm is presented to decide (i) whether a given position is a winning position, and to find a move to a winning position, if not; and (ii) to decide whether two given positions are congruent, in the sense of misère quotient theory (Plambeck, Integers, 5:36, 2005; Plambeck and Siegel, J Combin Theory Ser A, 115: 593–622, 2008). The methods are based on the theory of short rational generating functions (Barvinok and Woods, J Am Math Soc, 16: 957–979, 2003).

Keywords

Combinatorial game Lattice game Convex polyhedron Generating function Affine semigroup Misère quotient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barvinok A (2006) The complexity of generating functions for integer points in polyhedra and beyond. International Congress of Mathematicians, vol III. European Mathematical Society, Zurich, pp 763–787Google Scholar
  2. Barvinok A, Woods K (2003) Short rational generating functions for lattice point problems. J Am Math Soc 16(4): 957–979 (electronic)CrossRefGoogle Scholar
  3. Bouton CL (1901/02) Nim, a game with a complete mathematical theory. Ann Math (2) 3(1–4):35–39Google Scholar
  4. Dawson T (1934) Fairy chess supplement. The problemist: British Chess Problem Society 2(9), 94, problem no. 1603Google Scholar
  5. Fink A (2011) Lattice games without rational strategies. J Comb Theory Ser A 119(2): 450–459CrossRefGoogle Scholar
  6. Guo A, Miller E (2010) Lattice point methods for combinatorial games. Adv Appl Math 46: 363–378. doi:10.1016/j.aam.2010.10.004 (arXiv:math.CO/0908.3473; Erratum: preprint, 2011)Google Scholar
  7. Guo A, Miller E, Weimerskirch M (2009) Potential applications of commutative algebra to combinatorial game theory. In: Kommutative Algebra, abstracts from the April 19–25, 2009 workshop, organized by W. Bruns, H. Flenner, and C. Huneke, Oberwolfach Rep 22:23–26Google Scholar
  8. Guy RK, Smith CAB (1956) The G-values of various games. Proc Camb Philos Soc 52: 514–526CrossRefGoogle Scholar
  9. Miller E (2010) Affine stratifications from finite misère quotients (preprint, 2010. arXiv:math. CO/1009. 2199v1) Google Scholar
  10. Miller E, Sturmfels B (2005) Combinatorial commutative algebra. Graduate texts in mathematics, vol 227. Springer–Verlag, New YorkGoogle Scholar
  11. Plambeck TE (2005) Taming the wild in impartial combinatorial games. Integers 5(1), G5, p 36 (electronic)Google Scholar
  12. Plambeck TE, Siegel AN (2008) Misère quotients for impartial games. J Combin Theory Ser A 115(4): 593–622 (arXiv:math.CO/0609825v5) Google Scholar
  13. Weimerskirch M (2009) An algorithm for computing indistinguishability quotients in misère impartial combinatorial games (preprint)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsDuke UniversityDurhamUSA
  2. 2.MIT Computer Science and Artificial Intelligence LaboratoryCambridgeUSA

Personalised recommendations