International Journal of Game Theory

, Volume 41, Issue 2, pp 369–380 | Cite as

Optimization incentive and relative riskiness in experimental stag-hunt games

  • D. DuboisEmail author
  • M. Willinger
  • P. Van Nguyen


We compare the experimental results of three stag-hunt games. In contrast to Battalio et al. (Econometrica 69:749–764, 2001), our design keeps the riskiness ratio of the two strategies at a constant level as the optimization premium is increased. We define the riskiness ratio as the relative payoff range of the two strategies. We find that decreasing the riskiness ratio while keeping the optimization premium constant decreases sharply the frequency of the payoff-dominant equilibrium strategy. On the other hand an increase of the optimization premium with a constant riskiness ratio has no effect on the choice frequencies. Finally, we confirm the dynamic properties found by Battalio et al. that increasing the optimization premium favours best-response and sensitivity to the history of play.


Coordination game Game theory Experimental economics 

JEL Classification

C72 C92 D81 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderlini L (1999) Communication, computability and common interest games. Games Econ Behav 27: 1–37CrossRefGoogle Scholar
  2. Battalio R, Samuelson L, Van Huyck J (2001) Optimization incentives and coordination failure in laboratory stag hunt games. Econometrica 69: 749–764CrossRefGoogle Scholar
  3. Berninghaus S, Ehrhart K (2001) Coordination and information: recent experimental evidence. Econ Lett 73: 345–351CrossRefGoogle Scholar
  4. Carlsson H, Van Damme E (1993) Global games and equilibrium selection. Econometrica 61: 989–1018CrossRefGoogle Scholar
  5. Cooper R, Dejong D, Forsythe D, Ross T (1992) Communication in coordination games. Q J Econ 107: 739–779CrossRefGoogle Scholar
  6. Feltovich N (2005) Critical values for the robust rank-order test. Commun Stat 34: 525–547CrossRefGoogle Scholar
  7. Fligner M, Policello G (1981) Robust rank procedures for the Behrens-Fisher problem. J Am Stat Assoc 76: 162–168CrossRefGoogle Scholar
  8. Friedman D (1996) Equilibrium in evolutionary games: Some experimental results. Econ J 106: 1–25CrossRefGoogle Scholar
  9. Fudenberg D, Levine DK (1995) Consistency and cautious fictitious play. J Econ Dynam Control 19: 1065–1089CrossRefGoogle Scholar
  10. Fudenberg D, Levine DK (1998) The theory of learning in games. The MIT Press, CambridgeGoogle Scholar
  11. Harsanyi J, Selten R (1988) A general theory of equilibrium selection for games with complete information. M.I.T. Press, CambridgeGoogle Scholar
  12. Harsanyi J, Selten R (1995) A new theory of equilibrium selection for games with complete information. Games Econ Behav 8: 91–122CrossRefGoogle Scholar
  13. McKelvey R, Palfrey T (1995) Quantal response equilibria for normal form games. Games Econ Behav 10: 6–38CrossRefGoogle Scholar
  14. Schmidt D, Shupp R, Walker J, Ostrom E (2003) Playing safe in coordination games: the roles of risk-dominance, payoff dominance and history of play. Games Econ Behav 42: 281–299CrossRefGoogle Scholar
  15. Straub P (1995) Risk dominance and coordination failures in static games. Q Rev Econ Fin 35: 339–363CrossRefGoogle Scholar
  16. Van Huyck J, Battalio R, Beil R (1990) Tacit coordination games, strategic uncertainty and coordination failure. Am Econ Rev 80: 234–248Google Scholar
  17. Van Huyck J, Battalio R, Beil R (1991) Strategic uncertainty, equilibrium selection, and coordination failure in average opinion games. Q J Econ 106: 886–911CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.LAMETA-CNRS, UFR d’EconomieMontpellier CedexFrance
  2. 2.LAMETA, UFR d’EconomieMontpellier CedexFrance
  3. 3.BETA-CNRSUniversité de StrasbourgStrasbourgFrance

Personalised recommendations