International Journal of Game Theory

, Volume 37, Issue 3, pp 371–386 | Cite as

Cournot–Walras equilibrium as a subgame perfect equilibrium

  • Francesca Busetto
  • Giulio Codognato
  • Sayantan Ghosal
Original Paper


In this paper, we investigate the problem of the strategic foundation of the Cournot–Walras equilibrium approach. To this end, we respecify à la Cournot–Walras the mixed version of a model of simultaneous, noncooperative exchange, originally proposed by Lloyd S. Shapley. We show, through an example, that the set of the Cournot–Walras equilibrium allocations of this respecification does not coincide with the set of the Cournot–Nash equilibrium allocations of the mixed version of the original Shapley’s model. As the nonequivalence, in a one-stage setting, can be explained by the intrinsic two-stage nature of the Cournot–Walras equilibrium concept, we are led to consider a further reformulation of the Shapley’s model as a two-stage game, where the atoms move in the first stage and the atomless sector moves in the second stage. Our main result shows that the set of the Cournot–Walras equilibrium allocations coincides with a specific set of subgame perfect equilibrium allocations of this two-stage game, which we call the set of the Pseudo–Markov perfect equilibrium allocations.


Walras equilibrium Cournot–Nash equilibrium Cournot–Walras equilibrium Subgame perfect equilibrium 

JEL Classification

C72 D51 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aliprantis CD, Border KC (1999) Infinite dimensional analysis. Springer, New YorkGoogle Scholar
  2. Amir R, Sahi S, Shubik M, Yao S (1990) A strategic market game with complete markets. J Econ Theory 51: 126–143CrossRefGoogle Scholar
  3. Aumann RJ (1965) Integrals of set valued functions. J Math Anal Appl 12: 1–12CrossRefGoogle Scholar
  4. Aumann RJ (1966) Existence of competitive equilibria in markets with a continuum of traders. Econometrica 24: 1–17CrossRefGoogle Scholar
  5. Bonnisseau J-M, Florig M (2003) Existence and optimality of oligopoly equilibria in linear exchange economies. Econ Theory 22: 727–741CrossRefGoogle Scholar
  6. Codognato G (1995) Cournot–Walras and Cournot equilibria in mixed markets: a comparison. Econ Theory 5: 361–370CrossRefGoogle Scholar
  7. Codognato G, Gabszewicz JJ (1991) Equilibres de Cournot–Walras dans une économie d’échange. Revue Econ 42:1013–1026, 1–17Google Scholar
  8. Codognato G, Gabszewicz JJ (1993) Cournot–Walras equilibria in markets with a continuum of traders. Econ Theory 3: 453–464CrossRefGoogle Scholar
  9. Codognato G, Ghosal S (2000a) Cournot–Nash equilibria in limit exchange economies with complete markets and consistent prices. J Math Econ 34: 39–53CrossRefGoogle Scholar
  10. Codognato G, Ghosal S (2000b) Oligopoly à la Cournot–Nash in markets with a continuum of traders. Discussion Paper No 2000-5, CEPET (Central European Program in Economic Theory) Institute of Public Economics, Graz UniversityGoogle Scholar
  11. d’Aspremont C, DosSantos Ferreira R, Gérard-Varet L-A (1997) General equilibrium concepts under imperfect competition: a Cournotian approach. J Econ Theory 73: 199–230CrossRefGoogle Scholar
  12. Dierker H, Grodal B (1986) Nonexistence of Cournot–Walras equilibrium in a general equilibrium model with two oligopolists. In: Hildenbrand W, Mas-Colell A(eds) Contributions to mathematical economics in honor of Gérard Debreu. North-Holland, AmsterdamGoogle Scholar
  13. Dubey P, Shapley LS (1994) Noncooperative general exchange with a continuum of traders: two models. J Math Econ 23: 253–293CrossRefGoogle Scholar
  14. Dubey P, Shubik M (1978) The noncooperative equilibria of a closed trading economy with market supply and bidding strategies. J Econ Theory 17: 1–20CrossRefGoogle Scholar
  15. Fudenberg D, Tirole J (1991) Game theory. MIT Press, CambridgeGoogle Scholar
  16. Gabszewicz JJ, Michel P (1997) Oligopoly equilibrium in exchange economies. In: Eaton BC, Harris RG(eds) Trade, technology and economics. Essays in honour of Richard G Lipsey. Edward Elgar, CheltenhamGoogle Scholar
  17. Gabszewicz JJ, Vial J-P (1972) Oligopoly ‘à la Cournot–Walras’ in a general equilibrium analysis. J Econ Theory 4: 381–400CrossRefGoogle Scholar
  18. Gale D (1960) The theory of linear economic models. Academic Press, New YorkGoogle Scholar
  19. Lahmandi-Ayed R (2001) Oligopoly equilibria in exchange economies: a limit theorem. Econ Theory 17: 665–674CrossRefGoogle Scholar
  20. Mas-Colell A (1982) The Cournotian foundations of Walrasian equilibrium theory. In: Hildenbrand W(eds) Advances in economic theory. Cambridge University Press, CambridgeGoogle Scholar
  21. Maskin E, Tirole J (2001) Markov perfect equilibrium. J Econ Theory 100: 191–219CrossRefGoogle Scholar
  22. Okuno M, Postlewaite A, Roberts J (1980) Oligopoly and competition in large markets. Am Econ Rev 70: 22–31Google Scholar
  23. Peck J, Shell K, Spear SE (1992) The market game: existence and structure of equilibrium. J Math Econ 21: 271–299CrossRefGoogle Scholar
  24. Postlewaite A, Schmeidler D (1978) Approximate efficiency of non-Walrasian Nash equilibria. Econometrica 46: 127–137CrossRefGoogle Scholar
  25. Roberts K (1980) The limit points of monopolistic competition. J Econ Theory 22: 256–278CrossRefGoogle Scholar
  26. Roberts DJ, Sonnenschein H (1977) On the foundations of the theory of monopolistic competition. Econometrica 45: 101–114CrossRefGoogle Scholar
  27. Sahi S, Yao S (1989) The noncooperative equilibria of a trading economy with complete markets and consistent prices. J Math Econ 18: 325–346CrossRefGoogle Scholar
  28. Shapley LS, Shubik M (1977) Trade using one commodity as a means of payment. J Polit Econ 85: 937–968CrossRefGoogle Scholar
  29. Shitovitz B (1973) Oligopoly in markets with a continuum of traders. Econometrica 41: 467–501CrossRefGoogle Scholar
  30. Shitovitz B (1997) A comparison between the core and the monopoly solutions in a mixed exchange economy. Econ Theory 10: 559–563CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Francesca Busetto
    • 1
  • Giulio Codognato
    • 1
  • Sayantan Ghosal
    • 2
  1. 1.Dipartimento di Scienze EconomicheUniversità degli Studi di UdineUdineItaly
  2. 2.Department of EconomicsUniversity of WarwickCoventryUK

Personalised recommendations