Advertisement

International Journal of Game Theory

, Volume 36, Issue 1, pp 47–55 | Cite as

The position value is the Myerson value, in a sense

  • André CasajusEmail author
Original Paper

Abstract

We characterize the position value for TU games with a cooperation structure in terms of the Myerson value of some natural modification of the original game—the link agent form. This construction is extended to TU games with a conference structure.

Keywords

TU game Cooperation structure Conference structure Graph Hypergraph Link agent form 

JEL Classification

C71 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algaba E, Bilbao JM, Borm P, López JJ (2000) The position value for union stable systems. Math Methods Oper Res 52:221–236CrossRefGoogle Scholar
  2. Aumann RJ, Drèze JH (1974) Cooperative games with coalition structures. Int J Game Theory 3:217–237CrossRefGoogle Scholar
  3. Bilbao JM, Jiménez N, López JJ (2006) A note on a value with incomplete information. Games Econ Behav 54(2):419–429CrossRefGoogle Scholar
  4. Borm P, Owen G, Tijs S (1992) On the position value for communication situations. SIAM J Discrete Math 5:305–320CrossRefGoogle Scholar
  5. Hamiache G (1999) A value with incomplete information. Games Econ Behav 26:59–78CrossRefGoogle Scholar
  6. Meessen R (1988) Communication games, Master’s thesis, Department of Mathematics. University of Nijmegen, the Netherlands. (in Dutch)Google Scholar
  7. Myerson RB (1977) Graphs and cooperation in games. Math Oper Res 2:225–229CrossRefGoogle Scholar
  8. Myerson RB (1980) Conference structures and fair allocation rules. Int J Game Theory 9:169–182CrossRefGoogle Scholar
  9. Shapley LS (1953) A value for n-person games. In: Kuhn H, Tucker A (eds) Contributions to the theory of games, vol II. Princeton University Press, Princeton, pp. 307–317Google Scholar
  10. Slikker M (2005) A characterization of the position value. Int J Game Theory 33:505–514CrossRefGoogle Scholar
  11. Slikker M, van den Nouweland A (2001) Social and economic networks in cooperative game theory. Kluwer, NorwellGoogle Scholar
  12. van den Nouweland A, Borm P, Tijs S (1992) Allocation rules for hypergraph communication situations. Int J Game Theory 20:255–268CrossRefGoogle Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  1. 1.Professur für MikroökonomikUniversität LeipzigLeipzigGermany

Personalised recommendations