Advertisement

International Journal of Game Theory

, Volume 36, Issue 3–4, pp 497–518 | Cite as

On the invariance of the set of stable matchings with respect to substitutable preference profiles

  • Ruth Martínez
  • Jordi MassóEmail author
  • Alejandro Neme
  • Jorge Oviedo
Original Paper

Abstract

For the many-to-one matching model we give a procedure to partition the set of substitutable preference profiles into equivalence classes with the property that all profiles in the same class have the same set of stable matchings. This partition allows to reduce the amount of information required by centralized stable mechanisms.

Keywords

Matching Stability Substitutable preferences Semilattice 

JEL Classification

C78 D71 D78 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulkadiroğlu A, Pathak P, Roth A (2005) The New York City high school match. Am Econ Rev Pap Proc 95:364–367CrossRefGoogle Scholar
  2. Abdulkadiroğlu A, Pathak P, Roth A, Sönmez T (2005) The Boston public school match. Am Econ Rev Pap Proc 95:368–371CrossRefGoogle Scholar
  3. Abdulkadiroğlu A, Pathak P, Roth A, Sönmez T (2006) Changing the Boston school choice mechanism: strategy-proofness as equal access, mimeoGoogle Scholar
  4. Abdulkadiroğlu A, Sönmez T (2003) School choice: a mechanism design approach. Am Econ Rev 93: 729–747CrossRefGoogle Scholar
  5. Alkan A (2001) On preferences over subsets and the lattice structure of stable matchings. Rev Econ Des 6:99–111Google Scholar
  6. Birkhoff G (1979) Lattice theory. American Mathematical Society, Colloquium Publications, 25 3rd ednGoogle Scholar
  7. Blair C (1988) The lattice structure of the set of stable matchings with multiple partners. Math Oper Res 13:619–628CrossRefGoogle Scholar
  8. Echenique F, Oviedo J (2006) A theory of stability in many-to-many matching markets. Theoret Econ 1:233–273Google Scholar
  9. Fleiner T (2003) A fixed-point approach to stable matchings and some applications. Math Oper Res 28: 103–126CrossRefGoogle Scholar
  10. Gale D, Shapley L (1962) College admissions and the stability of marriage. Am Math Monthly 69:9–15CrossRefGoogle Scholar
  11. Kelso A, Crawford V (1982) Job matchings, coalition formation, and gross substitutes. Econometrica 50:1483–1504CrossRefGoogle Scholar
  12. Romero-Medina A, Triossi M (2005) Ramón y Cajal: mediation and meritocracy, mimeoGoogle Scholar
  13. Roth A (1984a) The evolution of the labor market for medical interns and residents: a case study in game theory. J Polit Econ 92:991–1016CrossRefGoogle Scholar
  14. Roth A (1984b) Stability and polarization of interests in job matching. Econometrica 52:47–57CrossRefGoogle Scholar
  15. Roth A (1985) Conflict and coincidence of interest in job matching. Math Oper Res 10:379–389Google Scholar
  16. Roth A (2002) The economist as engineer: game theory, experimentation, and computation as tools for design economics. Econometrica 70:1341–1378CrossRefGoogle Scholar
  17. Roth A, Peranson E (1999) The redesign of the matching market for American physicians: some engineering aspects of economic design. Am Econ Rev 89:748–780CrossRefGoogle Scholar
  18. Roth A, Xing X (1994) Jumping the gun: imperfections and institutions related to the timing of market transactions. Am Econ Rev 84:992–1044Google Scholar
  19. Szpilrajn E (1930) Sur l’extension de l’ordre partiel. Fundamenta Mathematicae 16:386–389Google Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  • Ruth Martínez
    • 1
  • Jordi Massó
    • 2
  • Alejandro Neme
    • 1
  • Jorge Oviedo
    • 1
  1. 1.Instituto de Matemática Aplicada de San LuisUniversidad Nacional de San Luis and CONICETSan LuisArgentina
  2. 2.Departament d’Economia i d’Història Econòmica and CODEUniversitat Autònoma de BarcelonaBellaterra (Barcelona)Spain

Personalised recommendations