International Journal of Game Theory

, Volume 36, Issue 2, pp 209–222 | Cite as

The core and the Weber set for bicooperative games

  • J. M. Bilbao
  • J. R. Fernández
  • N. Jiménez
  • J. J. López
Original Paper


This paper studies two classical solution concepts for the structure of bicooperative games. First, we define the core and the Weber set of a bicooperative game and prove that the core is always contained in the Weber set. Next, we introduce a special class of bicooperative games, the so-called bisupermodular games, and show that these games are the only ones in which the core and the Weber set coincide.

AMS Subject Classification



Bicooperative games Core Weber set Bisupermodular games 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aubin JP (1991) Cooperative fuzzy games. Math Oper Res 6:1–13CrossRefGoogle Scholar
  2. Bilbao JM (2000) Cooperative games on combinatorial structures. Kluwer, BostonGoogle Scholar
  3. Chua VCH, Huang HC (2003) The Shapley-Shubik index, the donation paradox and ternary games. Soc Choice Welf 20:387–403CrossRefGoogle Scholar
  4. Derks J (1992) A short proof of the inclusion of the core in the Weber set. Int J Game Theory 21:149–150CrossRefGoogle Scholar
  5. Derks J, Gilles R (1995) Hierarchical organization structures and constraints on coalition formation. Int J Game Theory 24:147–163CrossRefGoogle Scholar
  6. Felsenthal D, Machover M (1997) Ternary voting games. Int J Game Theory 26:335–351Google Scholar
  7. Grabisch M, Labreuche Ch (2005a) Bi-capacities—I: definition. M öbius transform and interaction. Fuzzy Sets Syst 151:211–236CrossRefGoogle Scholar
  8. Grabisch M, Labreuche Ch (2005b) Bi-capacities—II: the Choquet integral. Fuzzy Sets Syst 151:237–259CrossRefGoogle Scholar
  9. Gillies DB (1953) Some theorems on n-person games. PhD Thesis, Princeton University Press, PrincetonGoogle Scholar
  10. Hsiao C, Raghavan T (1993) Shapley value for multi-choice cooperative games (I). Games Econ Behav 5:240–256CrossRefGoogle Scholar
  11. Ichiishi T (1981) Supermodularity: applications to convex games and the greedy algorithm for LP. J Econ Theory 25:283–286CrossRefGoogle Scholar
  12. Myerson RB (1991) Game Theory: analysis of conflict. Harvard University Press, CambridgeGoogle Scholar
  13. Nouweland A van den, Potters J, Tijs S, Zarzuelo J (1995) Cores and related solution concepts for multi-choice games. Math Methods Oper Res 41:289–311CrossRefGoogle Scholar
  14. Rockafellar RT (1970) Convex analysis. Princeton University Press, PrincetonGoogle Scholar
  15. Shapley LS (1971) Cores of convex games. Int J Game Theory 1:11–26CrossRefGoogle Scholar
  16. Schrijver A (1986) Theory of linear and integer programming. Wiley, New YorkGoogle Scholar
  17. Tijs S, Branzei R, Ishihara S, Muto S (2004) On cores and stable sets for fuzzy games. Fuzzy Sets Syst 146:285–296CrossRefGoogle Scholar
  18. Weber RJ (1988) Probabilistic values for games. In: Roth AE (eds) The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press, Cambridge, pp 101–119Google Scholar

Copyright information

© Springer Verlag 2007

Authors and Affiliations

  • J. M. Bilbao
    • 1
  • J. R. Fernández
    • 1
  • N. Jiménez
    • 1
  • J. J. López
    • 1
  1. 1.Escuela Superior de Ingenieros, Matemática Aplicada IIUniversidad de SevillaSevillaSpain

Personalised recommendations