Empirical Economics

, Volume 57, Issue 5, pp 1829–1852 | Cite as

Backcasting cement production and characterizing cement’s economic cycles for Chile 1991–2015

  • Byron J. Idrovo-Aguirre
  • Javier E. Contreras-ReyesEmail author


Cement is a non-storable input in the medium and long term. The evidence in Chile shows that cement supply and demand are in relative equilibrium, so the demand or supply of this input can measure the activity in the structural construction or work. The aim of this paper is to backcast the series of cement production since January 2009, using as an instrument the connection of the series of cement sales, available on a monthly basis from 1991–2015. To this end, we apply the Johansen cointegration method. Then, a model of state space is proposed to characterize the cycle of cement production, taking its connection with investment in construction into account. Indeed, cement production, technically, is a leading indicator of sectoral investment.


Cement Construction investment Retropolation Cointegration State space Chile 

JEL Classification

C1 E2 L6 O4 



The authors acknowledge the valuable comments of the Economic Research team of the Cámara Chilena de la Construcción (CChC). Marcela Ruiz-Tagle provided especially illuminating and important comments. We also thank the Instituto Nacional de Estadística (INE, Santiago, Chile) to permit us access to the cement as analytical indicator database. The support Harry Estay in the drafting of a cooperation agreement between INE-CChC is especially appreciated. We would like to thank the editor and two anonymous referees for their helpful comments, suggestions and valuable discussion for this work.


  1. Aisen A, Jones I (2009) Modelo de corto plazo para proyectar el empleo de la construcción. Econ Chile 12(2):77–82Google Scholar
  2. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  3. Aranoff G (2011) Competitive manufacturing with fluctuating demand and diverse technology: mathematical proofs and illuminations on industry output-flexibility. Econ Model 28(3):1441–1450CrossRefGoogle Scholar
  4. Banco Central de Chile (2007) La Política Monetaria del Banco Central de Chile en el Marco de Metas de Inflación. Publicaciones del Banco Central de Chile. Accessed 26 June 2016
  5. Banco Central de Chile (2008) Cuentas Nacionales de Chile. Compilación de Referencia. Accessed 28 June 2016
  6. Bergmann R, Ludbrook J, Spooren WP (2000) Different outcomes of the Wilcoxon–Mann–Whitney test from different statistics packages. Am Stat 54(1):72–77Google Scholar
  7. Bravo H, Luna L, Correa V, Ruiz F (2002) Desestacionalización de series económicas: el procedimiento usado por el Banco Central de Chile. Working Paper No. 177. Banco Central de Chile. Accessed 30 June 2016
  8. Cámara Chilena de la Construcción (2014) Infraestructura crítica para el desarrollo. Publicaciones de la Cámara Chilena de la Construcción (CChC). Accessed 01 July 2016
  9. Cámara Chilena de la Construcción (2015) Informe de Macroeconomía y Construcción (MACh). Publicación semestral de la Cámara Chilena de la Construcción (CChC), Informe MACh, No. 42. Accessed 03 July 2016
  10. Cerda R, Vergara R (2008) Government subsidies and presidential election outcomes: evidence for a developing country. World Dev 36(11):2470–2488CrossRefGoogle Scholar
  11. Clark PK (1989) Trend reversion in real output and unemployment. J Econom 40(1):15–32CrossRefGoogle Scholar
  12. Contreras-Reyes J, Idrovo B (2011) En busca de un modelo Benchmark Univariado para predecir la tasa de desempleo de Chile. Cuad Econ 30(55):105–125Google Scholar
  13. Contreras-Reyes JE, Palma W (2013) Statistical analysis of autoregressive fractionally integrated moving average models in R. Comput Stat 28(5):2309–2331CrossRefGoogle Scholar
  14. Crowder WJ, Wohar ME (2004) A cointegrated structural VAR model of the Canadian economy. Appl Econ 36(3):195–213CrossRefGoogle Scholar
  15. Diaz-Alejandro C (1985) Good-bye financial repression, hello financial crash. J Dev Econ 19(1–2):1–24CrossRefGoogle Scholar
  16. Dickey DA, Fuller WA (1979) Distribution of the estimates for autoregressive time series with a unit root. J Am Stat Assoc 74(366a):427–431CrossRefGoogle Scholar
  17. Durán-Palma F, Wilkinson A, Korczynski M (2005) Labour reform in a neo-liberal ’protected’ democracy: Chile 1990–2001. Int J Hum Resour Man 16(1):65–89CrossRefGoogle Scholar
  18. Gupta R, Kanda PT, Modise MP, Paccagnini A (2015) DSGE model-based forecasting of modelled and nonmodelled inflation variables in South Africa. Appl Econ 47(3):207–221CrossRefGoogle Scholar
  19. Hannan EJ, Quinn BG (1979) The determination of the order of an autoregression. J R Stat Soc B 41(2):190–195Google Scholar
  20. Harvey A (1990) The Econometric Analysis of Time Series, 2nd edn. MIT Press, CambridgeGoogle Scholar
  21. Harvey A (2011) Modelling the Phillips curve with unobserved components. Appl Financ Econ 21(1–2):7–17CrossRefGoogle Scholar
  22. Humphrey C, Loft A, Woods M (2009) The global audit profession and the international financial architecture: understanding regulatory relationships at a time of financial crisis. Acc Organ Soc 34(6–7):810–825CrossRefGoogle Scholar
  23. Idrovo B (2010) Cuál es el Crecimiento de Largo Plazo de la Economía Chilena? Una Respuesta Formal para una Antigua Pregunta. Cuad Econ 29(53):31–55Google Scholar
  24. Idrovo B (2012) Inversión en infraestructura pública y crecimiento económico, evidencia para Chile. Cámara Chilena de la Construcción, Documentos de Trabajo, No. 69. Accessed 05 July 2016
  25. Jarque CM, Bera AK (1987) A test for normality of observations and regression residuals. Int Stat Rev 55(2):163–172CrossRefGoogle Scholar
  26. Johansen S (1991) Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models. Econometrica 59(6):1551–1580CrossRefGoogle Scholar
  27. Johansen S (1995) Likelihood-based Inference in cointegrated vector autoregressive models. Oxford University Press, OxfordCrossRefGoogle Scholar
  28. Johansen S, Juselius K (1990) Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxf Bull Econ Stat 52(2):169–210CrossRefGoogle Scholar
  29. Kim C-J, Nelson CR (1999) State-space models with regime switching: classical and Gibbs-sampling approaches with applications, 1st ed, vol 1, no 0262112388. MIT Press BooksGoogle Scholar
  30. Ljung GM, Box GE (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297–303CrossRefGoogle Scholar
  31. Lütkepohl H (2007) General-to-specific or specific-to-general modelling? An opinion on current econometric terminology. J Econom 136(1):319–324CrossRefGoogle Scholar
  32. MacKinnon JG, Haug AA, Michelis L (1999) Numerical distribution functions of likelihood ratio tests for cointegration. J Appl Econom 14(5):563–577CrossRefGoogle Scholar
  33. Marcel M, Tokman M, Valdé R, Venavides P (2001) Balance Estructural: La base de la nueva regla de política fiscal chilena. Econ Chile 4(3):5–27Google Scholar
  34. Norman G (1979) Economies of scale in the cement industry. J Ind Econ 27(4):317–337CrossRefGoogle Scholar
  35. Piguillem F (2004) Los Ciclos Agregados y los Ciclos de la Construcción. Documento de Trabajo No. 18. Cámara Chilena de la Construcción. Accessed 07 July 2016
  36. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464CrossRefGoogle Scholar
  37. Siembieda W, Johnson L, Franco G (2012) Rebuild fast but rebuild better: Chile’s initial recovery following the 27 February 2010 earthquake and tsunami. Earthq Spectra 28(S1):S621–S641CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Byron J. Idrovo-Aguirre
    • 1
  • Javier E. Contreras-Reyes
    • 2
    Email author
  1. 1.Gerencia de Estudios EconómicosCámara Chilena de la ConstrucciónSantiagoChile
  2. 2.Instituto de EstadísticaUniversidad de ValparaísoValparaisoChile

Personalised recommendations