Skip to main content

Advertisement

Log in

On measuring economic growth from outer space: a single country approach

  • Published:
Empirical Economics Aims and scope Submit manuscript

Abstract

This article proposes a simple statistical approach to combine nighttime light data with official national income growth figures. The suggested procedure arises from a signal-plus-noise model for official growth along with a constant elasticity relation between observed night lights and income. The methodology implemented in this paper differs from the approach based on panel data for several countries at once that uses World Bank ratings of income data quality for the countries under study to produce an estimate of true economic growth. The new approach: (a) leads to a relatively simple and robust statistical method based only on time series data pertaining to the country under study and (b) does not require the use of quality ratings of official income statistics. For illustrative purposes, some empirical applications are made for Mexico, China and Chile. The results show that during the period of study there was underestimation of economic growth for both Mexico and Chile, while official figures of China over-estimated true economic growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Author’s elaboration with data from NOAA

Fig. 2

Source: Authors’ elaboration with data from Banco de Información Económica, INEGI: http://www.inegi.org.mx/sistemas/bie/. Accessed on May 02, 2014

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aruoba BS, Diebold FX, Nalewaik J, Shorfheide F, Song D (2013) Improving GDP measurements: a measurement-error perspective. National Bureau of Economic Research, Working paper 18954:1–34

  • Bertinelli L, Strobl E (2013) Quantifying the local economic growth impact of hurricane strikes: an analysis from outer space for the Caribbean. J Appl Meteorol Climatol 52:1688–1697

    Article  Google Scholar 

  • Chen X, Nordhaus W (2011) Using luminosity data as a proxy for economic statistics. Proc Natl Acad Sci 108(21):8589–8594

    Article  Google Scholar 

  • Doll C, Muller JP, Elvidge CD (2000) Nightime imagery as a tool for global mapping of socio-economic parameters and greenhouse gas emissions. Ambio 29:157–162

    Article  Google Scholar 

  • Elliot RJR, Strobl E, Sun P (2015) The local impact of typhoons on economic activity in China: a view from outer space. J Urban Econ 88:50–66

    Article  Google Scholar 

  • Elvidge CD, Ziskin D, Baugh KE, Tuttle BT, Ghosh T, Pack DW, Erwin EH, Zhizhin M (2009) A fifteen year record of global natural gas flaring derived from satellite data. Energies 2(3):595–622

    Article  Google Scholar 

  • Ghosh T, Sutton P, Powell R, Anderson S, Elvidge ChD (2009) Estimation of Mexico’s informal economy and remittances using nighttime imagery. Remote Sens 1(3):418–444

    Article  Google Scholar 

  • Granger CWJ, Newbold P (1974) Spurious regressions in econometrics. J Econom 2:111–120

    Article  Google Scholar 

  • Guerrero VM (2007) Time series smoothing by penalized least squares. Stat Probab Lett 77(12):1225–1234

    Article  Google Scholar 

  • Harari M, La Ferrara E (2013) Conflict, climate and cells: a disaggregated analysis. Center for Economic Policy Research (CEPR) Discussion paper no. DP9277. SSRN: https://ssrn.com/abstract=2210247. Accessed 21 Oct 2015

  • Henderson JV, Storeygard A, Weil DN (2012) Measuring economic growth from outer space. Am Econ Rev 102(2):994–1028

    Article  Google Scholar 

  • Hodler R, Raschky PA (2014a) Economic shocks and civil conflict at the regional level. Econ Lett 124:530–533

    Article  Google Scholar 

  • Hodler R, Raschky PA (2014b) Regional favoritism. Q J Econ 129:995–1033

    Article  Google Scholar 

  • Michalopoulos S, Papaioannou E (2014) National institutions and subnational development in Africa. Q J Econ 129(1):151–213

    Article  Google Scholar 

  • Nordhaus W, Chen X (2014) A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics. J Econ Geogr 15:217–246

    Article  Google Scholar 

  • Phillips PCB, Perron P (1988) Testing for a unit root in time series regression. Biometrika 75:335–346

    Article  Google Scholar 

  • Rawski TG (2001) What’s happening to China’s GDP statistics. China Econ Rev 12(4):12–14

    Google Scholar 

  • Ruppert D, Wand MP, Carroll RJ (2003) Semiparametric regression. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Seo N (2011) The impacts of climate change on Australia and New Zealand: a gross cell product analysis by land cover. Aust J Agric Resour 55:220–238

    Article  Google Scholar 

  • United Nations, European Commission, International Monetary Fund, OCDE and WB (2009) System of national accounts 2008. European Communities, International Monetary Fund, Organisation for Economic Co-Operation and Development, United Nations and World Bank, New York

  • Wackerly D, Mendenhall W III, Scheaffer RL (2002) Mathematical statistics with applications, 6th edn. Thomson/Brooks-Cole, Grove

    Google Scholar 

  • World Bank (2002) Building statistical capacity to monitor development progress. World Bank, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Mendoza.

Additional information

The authors thank two anonymous referees and the editor of this journal for their valuable comments and suggestions. Víctor M. Guerrero acknowledges financial support from Asociación Mexicana de Cultura, A. C. to carry out this work.

Appendices

Appendix A: Obtaining the BLUE of D y

Let I be the (N − 1)-dimensional identity matrix, \( {\varvec{\upeta}} = \left( {\eta_{2} , \ldots ,\eta_{N} } \right)^{\prime } \) and \( {\varvec{\upvarepsilon}} = \left( {\varepsilon_{2} , \ldots , \varepsilon_{N} } \right)^{\prime } \), so that models (9) and (10) can be written as the system of linear equations

$$ \left( {\begin{array}{*{20}l} {D{\mathbf{z}}} \hfill \\ {D{\mathbf{x}}} \hfill \\ \end{array} } \right) = UD{\mathbf{y}}+\left( {\begin{array}{*{20}l} {\varvec{\upeta}} \hfill \\ {\varvec{\upvarepsilon}} \hfill \\ \end{array} } \right) $$

with \( U = \left( {\begin{array}{*{20}c} I \\ {\beta I} \\ \end{array} } \right) \), \( E\left( {\begin{array}{*{20}l} {\varvec{\upeta}} \hfill \\ {\varvec{\upvarepsilon}} \hfill \\ \end{array} } \right) = {\mathbf{0}}_{{2\left( {N - 1} \right)}} \) the zero vector of size 2(N − 1) and

$$ {\text{Va}}r\left( { \begin{array}{*{20}c} {\varvec{\upeta}} \\ {\varvec{\upvarepsilon}} \\ \end{array} } \right) = \left( {\begin{array}{*{20}c} {\sigma_{{}}^{2} I} & {0_{N - 1} } \\ {0_{N - 1} } & {\sigma_{\varepsilon }^{2} I} \\ \end{array} } \right) = \sigma_{\varepsilon }^{2} \left( {\begin{array}{*{20}c} {\alpha I} & {0_{N - 1} } \\ {0_{N - 1} } & I \\ \end{array} } \right) = \sigma_{\varepsilon }^{2}\Omega , $$

where \( 0_{N - 1} \) is the (N − 1)-dimensional zero matrix and \( \alpha = \sigma_{{}}^{2} /\sigma_{\varepsilon }^{2} \).

Then, by assuming that the parameters \( \beta \), \( \sigma_{\varepsilon }^{2} \) and \( \alpha \) are known, we apply GLS to obtain the best linear unbiased estimator (BLUE) of Dy, which is given by

$$ \widehat{{D{\mathbf{y}}}} = \left( {{\text{U}}^{{\prime }}\Omega ^{ - 1} U} \right)^{ - 1} U^{{\prime }}\Omega ^{ - 1} \left( {\begin{array}{*{20}c} {D{\mathbf{z}}} \\ {D{\mathbf{x}}} \\ \end{array} } \right) = \left( {\alpha^{ - 1} + \beta^{2} } \right)^{ - 1} \left( {\alpha^{ - 1} D{\mathbf{z}} + \beta D{\mathbf{x}}} \right), $$

that leads us to expression (11).

Appendix B: Unbiased estimation of \( \sigma_{\varepsilon }^{2} \)

Within the context of GLS, we can get an unbiased estimator of \( \sigma_{\varepsilon }^{2} \) by defining the residual vectors of models (9) and (10) as

$$ {\hat{\boldsymbol{\upeta }}} = D{\mathbf{z}} - \widehat{{D{\mathbf{y}}}} \,\,\,{\text{and}}\,\,\, {\hat{\boldsymbol{\upvarepsilon }}} = D{\mathbf{x}} - \beta \widehat{{D{\mathbf{y}}}} $$

so that the stacked residual vector becomes

$$ \begin{aligned} \left( {\begin{array}{*{20}c} {{\hat{\boldsymbol{\upeta }}}} \\ {{\hat{\boldsymbol{\upvarepsilon }}}} \\ \end{array} } \right) & = \left( {\begin{array}{*{20}c} {D{\mathbf{z}}} \\ {D{\mathbf{x}}} \\ \end{array} } \right) - U\widehat{{{\text{D}}{\mathbf{y}}}} \\ & = \left[ {\left( {\begin{array}{*{20}c} I \\ {0_{N - 1} } \\ \end{array} \begin{array}{*{20}c} {0_{N - 1} } \\ I \\ \end{array} } \right){-}\left( {\alpha^{ - 1} + \beta^{2} } \right)^{ - 1} U\left( {\alpha^{ - 1} I \beta I} \right)} \right]\left( {\begin{array}{*{20}c} {D{\mathbf{z}}} \\ {D{\mathbf{x}}} \\ \end{array} } \right) \\ & = \left[ {\left( {\begin{array}{*{20}c} I \\ {0_{N - 1} } \\ \end{array} \begin{array}{*{20}c} {0_{N - 1} } \\ I \\ \end{array} } \right){-}\left( {\alpha^{ - 1} + \beta^{2} } \right)^{ - 1} \left( {\begin{array}{*{20}c} {\alpha^{ - 1} I} \\ {\beta \alpha^{ - 1} I} \\ \end{array} \begin{array}{*{20}c} {\beta I} \\ {\beta^{2} I} \\ \end{array} } \right)} \right]\left[ {UD{\mathbf{y}} + \left( {\begin{array}{*{20}c} { {\varvec{\upeta}}} \\ { {\varvec{\upvarepsilon}}} \\ \end{array} } \right)} \right] \\ \end{aligned} $$

Now, since

$$ \left( {\alpha^{ - 1} + \beta^{2} } \right)^{ - 1} \left( {\begin{array}{*{20}c} {\alpha^{ - 1} I} \\ {\beta \alpha^{ - 1} I} \\ \end{array} \begin{array}{*{20}c} {\quad \beta I} \\ {\quad \beta^{2} I} \\ \end{array} } \right)U = U $$

we get

$$ \left( {\begin{array}{*{20}c} {{\hat{\boldsymbol{\upeta }}}} \\ {{\hat{\boldsymbol{\upvarepsilon }}}} \\ \end{array} } \right) = \left[ {\left( {\begin{array}{*{20}c} {\text{I}} \\ {0_{{{\text{N}} - 1}} } \\ \end{array} \begin{array}{*{20}c} {\quad 0_{{{\text{N}} - 1}} } \\ {\quad {\text{I}}} \\ \end{array} } \right) - {\text{H}}} \right]\left( {\begin{array}{*{20}c} { {\varvec{\upeta}}} \\ { {\varvec{\upvarepsilon}}} \\ \end{array} } \right), $$

with

$$ H = \left( {\alpha^{ - 1} + \beta^{2} } \right)^{ - 1} \left( {\begin{array}{*{20}c} {\alpha^{ - 1} I} \\ {\beta \alpha^{ - 1} I} \\ \end{array} \begin{array}{*{20}c} {\quad \beta I} \\ {\quad \beta^{2} I} \\ \end{array} } \right) $$

a symmetric and idempotent matrix whose trace, \( {\text{tr}}(H) = N - 1 \), is the number of degrees of freedom for the residual sum of squares, given by

$$ \left( {\begin{array}{*{20}c} {{\hat{\boldsymbol{\upeta }}}} \\ {{\hat{\boldsymbol{\upvarepsilon }}}} \\ \end{array} } \right) '\left( {\begin{array}{*{20}c} {\alpha^{ - 1} I} \\ {0_{N - 1} } \\ \end{array} \begin{array}{*{20}c} {\quad 0_{N - 1} } \\ {\quad I} \\ \end{array} } \right)^{ - 1} \left( {\begin{array}{*{20}c} {{\hat{\boldsymbol{\upeta }}}} \\ {{\hat{\boldsymbol{\upvarepsilon }}}} \\ \end{array} } \right) = \alpha^{ - 1} {\hat{\boldsymbol{\upeta }}}^{\prime } {\hat{\boldsymbol{\upeta }}} + {\hat{\boldsymbol{\upvarepsilon }}}^{\prime } {\hat{\boldsymbol{\upvarepsilon }}}. $$

The matrix H is called the “hat matrix” because it transforms the original data Dz and Dx into the estimated data \( \widehat{{D{\mathbf{z}}}} \) and \( \widehat{{D{\mathbf{x}}}} \) by means of the following relationship

$$ \left( {\begin{array}{*{20}c} {\widehat{{D{\mathbf{z}}}}} \\ {\widehat{{D{\mathbf{x}}}}} \\ \end{array} } \right) = U\widehat{{D{\mathbf{y}}}} = H\left( {\begin{array}{*{20}c} {D{\mathbf{z}}} \\ {D{\mathbf{x}}} \\ \end{array} } \right). $$

Thus, if \( \alpha \) and \( \beta \) were known, we obtain the following unbiased estimator

$$ {\hat{{\sigma }}}_{{{\varepsilon }}}^{2} = \frac{1}{N - 1}\left( {\alpha^{ - 1} {\hat{\boldsymbol{\upeta }}}^{\prime } {\hat{\boldsymbol{\upeta }}} + {\hat{\boldsymbol{\upvarepsilon }}}^{\prime } {\hat{\boldsymbol{\upvarepsilon }}} } \right). $$

In practice, we have to use the estimators \( \hat{\alpha }^{ - 1} \) and \( \hat{\beta }^{2} \), in place of the true parameters \( \alpha^{ - 1} \) and \( \beta^{2} \), so that two degrees of freedom are lost and the variance estimator becomes expression (13), where we should notice that \( {\hat{\boldsymbol{\upvarepsilon }}} = \hat{\beta }(\widehat{{D{\mathbf{z}}}} - \widehat{{D{\mathbf{y}}}}). \)

Appendix C: Original data employed in the empirical applications

Year

Mexico

China

Chile

Ln(DN)

Ln(GDP)

Ln(DN)

Ln(GDP)

Ln(DN)

Ln(GDP)

1992

0.356540

29.3690

− 0.349342

29.1549

− 1.201073

31.0451

1993

0.548981

29.3883

− 0.266380

29.2859

− 0.896996

31.1126

1994

0.563912

29.4319

− 0.159449

29.4090

− 0.918416

31.1681

1995

0.745930

29.3677

0.021317

29.5125

− 0.657251

31.2691

1996

0.690892

29.4179

− 0.023675

29.6078

− 0.633634

31.3406

1997

0.593879

29.4834

− 0.017993

29.6967

− 0.671262

31.4046

1998

0.699476

29.5313

0.078083

29.7718

− 0.494210

31.4364

1999

0.746560

29.5693

0.048182

29.8451

− 0.513416

31.4288

2000

0.813918

29.6333

0.141074

29.9257

− 0.417595

31.4727

2001

0.802614

29.6317

0.180832

30.0055

− 0.380645

31.5059

2002

0.804416

29.6399

0.283795

30.0926

− 0.336200

31.5275

2003

0.652805

29.6533

0.191841

30.1879

− 0.491460

31.5659

2004

0.712251

29.6927

0.362953

30.2841

− 0.406507

31.6246

2005

0.679279

29.7242

0.319271

30.3830

− 0.477887

31.6787

2006

0.713111

29.7712

0.425282

30.4928

− 0.409212

31.7236

2007

0.769451

29.8027

0.521681

30.6150

− 0.376859

31.7693

2008

0.787806

29.8203

0.557354

30.7012

− 0.356730

31.8004

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero, V.M., Mendoza, J.A. On measuring economic growth from outer space: a single country approach. Empir Econ 57, 971–990 (2019). https://doi.org/10.1007/s00181-018-1464-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00181-018-1464-1

Keywords

JEL Classification

Navigation