Empirical Economics

, Volume 51, Issue 2, pp 547–575 | Cite as

Financial frictions in Latvia

Article
  • 133 Downloads

Abstract

This paper builds a dynamic stochastic general equilibrium (DSGE) model for Latvia that would be suitable for policy analysis and forecasting purposes at Bank of Latvia. For that purpose, I adapt the DSGE model with financial frictions of Christiano et al. (J Econ Dyn Control 35:1999–2041, 2011. doi:10.1016/j.jedc.2011.09.005) to Latvia’s data, estimate it, and study whether adding the financial frictions block to an otherwise identical (‘baseline’) model is an improvement with respect to several dimensions. The main findings are: (1) The addition of the financial frictions block provides more appealing interpretation for the drivers of economic activity and allows to reinterpret their role; (2) financial frictions played an important part in Latvia’s 2008-recession; (3) the financial frictions model beats both the baseline model and the random walk model in forecasting both CPI inflation and GDP.

Keywords

DSGE model Financial frictions Small open economy Bayesian estimation Currency union Forecasting 

JEL Classification

E0 E3 F0 F4 G0 G1 

Notes

Acknowledgments

I thank Viktors Ajevskis, Rudolfs Bems, Konstantins Benkovskis, Martins Bitans, Dmitry Kulikov, Karl Walentin, and two anonymous referees for feedback. I also thank Andrejs Kurbatskis and several other colleagues at Bank of Latvia for helping with the data. All remaining errors are my own. I have benefited from the program code provided by Lawrence Christiano, Mathias Trabandt, and Karl Walentin for their model.

Supplementary material

181_2015_1014_MOESM1_ESM.pdf (643 kb)
Supplementary material 1 (pdf 642 KB)

References

  1. Adjemian S, Bastani H, Juillard M, Karame F, Mihoubi F, Perendia G, Pfeifer J, Ratto M, Villemot S (2011) Dynare: reference manual, version 4. Dynare working papers, 1, CEPREMAPGoogle Scholar
  2. Adolfson M, Laseen S, Linde J, Villani M (2008) Evaluating an estimated new Keynesian small open economy model. J Econ Dyn Control 32:2690–2721. doi:10.1016/j.jedc.2007.09.012 CrossRefGoogle Scholar
  3. Bernanke B, Gertler M, Gilchrist S (1999) The financial accelerator in a quantitative business cycle framework. In: Taylor JB, Woodford M (eds) Handbook of macroeconomics. Elsevier Science, Amsterdam, pp 1341–1393. doi:10.1016/S1574-0048(99)10034-X Google Scholar
  4. Christiano LJ, Eichenbaum M, Evans CL (2005) Nominal rigidities and the dynamic effects of a shock to monetary policy. J Polit Econ 113:1–45. doi:10.1086/426038 CrossRefGoogle Scholar
  5. Christiano LJ, Motto R, Rostagno M (2014) Risk shocks. Am Econ Rev 104:27–65. doi:10.1257/aer.104.1.27 CrossRefGoogle Scholar
  6. Christiano LJ, Trabandt M, Walentin K (2010) Involuntary unemployment and the business cycle. NBER working papers 15801, National Bureau of Economic Research, IncGoogle Scholar
  7. Christiano LJ, Trabandt M, Walentin K (2011) Introducing financial frictions and unemployment into a small open economy model. J Econ Dyn Control 35:1999–2041. doi:10.1016/j.jedc.2011.09.005 CrossRefGoogle Scholar
  8. Diebold FX, Mariano R (1995) Comparing predictive accuracy. J Bus Econ Stat 13:253–265Google Scholar
  9. Dixit AK, Stiglitz JE (1977) Monopolistic competition and optimum product diversity. Am Econ Rev 67:297–308Google Scholar
  10. Fisher I (1933) The debt-deflation theory of great depressions. Econometrica 1:337–357CrossRefGoogle Scholar
  11. Justiniano A, Primiceri G, Tambalotti A (2011) Investment shocks and the relative price of investment. Rev Econ Dyn 14:101–121. doi:10.1016/j.red.2010.08.004 CrossRefGoogle Scholar
  12. Stehrer R (2013) Accounting relations in bilateral value added trade. wiiw working papers 101, The Vienna Institute for International Economic Studies, wiiwGoogle Scholar

Copyright information

© European Union 2015

Authors and Affiliations

  1. 1.Bank of LatviaRigaLatvia

Personalised recommendations