Advertisement

Empirical Economics

, Volume 47, Issue 2, pp 427–450 | Cite as

On the choice of regularization parameters in specification testing: a critical discussion

  • Stefan Sperlich
Article

Abstract

This article reviews and discusses the problem of choosing smoothing parameters and resampling schemes for specification tests in econometrics. While smoothing is used for the regularization of the non-specified parts of the null hypothesis and omnibus alternatives, the resampling serves for determining the critical value. Several of the existing selection methods are discussed, implemented, and compared. This has been done for cross-sectional data along the example of additivity testing. Doubtless, all problems considered here carry over to specification testing with dependent data. Intensive simulations illustrate that this is still an open problem that easily corrupts these tests in practice. Possible ways out of the dilemma are proposed.

Keywords

Nonparametric specification tests Adaptive testing  Bandwidth choice Bootstrap Subsampling 

JEL Classification

C12 C14 C52 

Notes

Acknowledgments

The author acknowledges the very helpful discussion of the anonymous referees and the editors, which has improved the paper a lot. Further thanks goes to Jorge Barrientos, Holger Dette, Juan Rodriguez-Poo, Vladimir Spokoiny, Michael Wolf, and the participants of the seminars at the Universities of Galicia, Spain. The author acknowledges funding from the Swiss National Science Foundation, project 100018-140295, and the Spanish MCyT, project MTM2008-03010.

References

  1. Barrientos J, Sperlich S (2010) The size problem of bootstrap tests when the null is non- or semiparametric. Revista Colombiana de Estadística 33:307–319Google Scholar
  2. Cao-Abad R (1993) Bootstrapping the mean integrated squared error. J Multivar Anal 45:137–160CrossRefGoogle Scholar
  3. Cao-Abad R, González-Manteiga W (1993) Bootstrap methods in regression smoothing. Nonparametr Stat 2:379–388CrossRefGoogle Scholar
  4. Chen SX, Gao J (2007) An adaptive empirical likelihood test for parametric time series regression models. J Econom 141:950–972CrossRefGoogle Scholar
  5. Claeskens G, Van Keilegom I (2003) Bootstrap confidence bands for regression curves and their derivatives. Ann Stat 6:1852–1884Google Scholar
  6. Davidson R, Flachaire E (2008) The wild bootstrap, tamed at last. J Econom 146:162–169CrossRefGoogle Scholar
  7. Delgado MA, Rodriguez-Poó JM, Wolf M (2001) Subsampling cube root asymptotics with an application to Manski’s MSE. Econ Lett 73:241–250CrossRefGoogle Scholar
  8. Dette H, von Lieres und Wilkau C, Sperlich S (2005) A comparison of different nonparametric method for inference on additive models. Nonparametr Stat 17:57–81CrossRefGoogle Scholar
  9. Duong T, Hazelton M (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. Nonparametr Stat 15:7–30Google Scholar
  10. Eubank RL, Ching-Shang L, Wang S (2005) Testing lack of fit of parametric regression models using nonparametric regression techniques. Statistica Sinica 15:135–152Google Scholar
  11. Fahrmeir L, Kneib T, Lang S (2004) Penalized structured additive regression: a Bayesian perspective. Statistica Sinica 14:731–761Google Scholar
  12. Fahrmeir L, Kneib T, Konrath S (2010) Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection. Stat Comput 20:203–219CrossRefGoogle Scholar
  13. Gao J, Gijbels I (2008) Bandwidth selection in nonparametric kernel testing. J Am Stat Assoc 484: 1584–1594Google Scholar
  14. Gao J, Gijbels I, Van Bellegem S (2008) Nonparametric simultaneous testing for structural breaks. J Econometr 143:123–142CrossRefGoogle Scholar
  15. González-Manteiga W, Martínez-Miranda MD, Pérez-González A (2004) The choice of smoothing parameter in nonparametric regression through wild bootstrap. Comput Stat Data Anal 47:487–515CrossRefGoogle Scholar
  16. González-Manteiga W, Crujeiras RM (2013) An updated review of goodness-of-fit tests for regression models. Test Forthcom 22:361–411Google Scholar
  17. Gozalo PL, Linton OB (2001) Testing additivity in generalized nonparametric regression models with estimated parameters. J Econometr 104:1–48CrossRefGoogle Scholar
  18. Guerre E, Lavergne P (2005) Data-driven rate-optimal specification testing in regression models. Ann Stat 33:840–870CrossRefGoogle Scholar
  19. Härdle W, Mammen E (1993) Comparing nonparametric versus parametric regression fits. Ann Stat 21:1926–1947CrossRefGoogle Scholar
  20. Härdle W, Marron JS (1991) Bootstrap simultaneous bars for nonparametric regression. Ann Stat 19: 778–796Google Scholar
  21. Hart JD (1997) Nonparametric smoothing and lack-of-fit tests. Springer, New YorkCrossRefGoogle Scholar
  22. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. Chapman & Hall, LondonGoogle Scholar
  23. Hengartner NW, Sperlich S (2005) Rate optimal estimation with the integration method in the presence of many covariates. J Multivar Anal 95:246–272CrossRefGoogle Scholar
  24. Horowitz JL, Spokoiny V (2001) An adaptive, rate-optimal test of parametric mean-regression model against a nonparametric alternative. Econometrica 69:599–631CrossRefGoogle Scholar
  25. Ibragimov IA, Khasminski RZ (1981) Statistical estimation; asymptotic theory. Springer, HeidelbergCrossRefGoogle Scholar
  26. Ingster YI (1982) Minimax nonparametric detection of signals in white Gaussian noise. Probl Inf Transm 18:130–140Google Scholar
  27. Ingster YI (1993) Asymptotically minimax hypothesis testing for nonparametric alternatives \(I, I\!I, I\!I\!I\). Math Methods Stat 2:85–114Google Scholar
  28. Jones MC, Davies SJ, Park BU (1994) Versions of kernel type regression estimators. J Am Stat Assoc 89:825–832CrossRefGoogle Scholar
  29. Kallenberg WCM, Ledwina T (1995) Consistency and Monte-Carlo simulations of a data driven version of smooth goodness-of-fit tests. Ann Stat 23:1594–1608CrossRefGoogle Scholar
  30. Kim W, Linton OB, Hengartner N (1999) A computationally efficient oracle estimator of additive nonparametric regression with bootstrap confidence intervals. J Comput Gr Stat 8:278–297Google Scholar
  31. Köhler M, Schindler A, Sperlich S (2013) A review and comparison of bandwidth selection methods for kernel regression. Int Stat Rev 74:215–233Google Scholar
  32. Kulasekera KB, Wang J (1997) Smoothing parameter selection for power optimality in testing of regression curves. J Am Stat Assoc 438:500–511CrossRefGoogle Scholar
  33. Ledwina T (1994) Data-driven version of Neyman’s smooth test of fit. J Am Stat Assoc 89:1000–1005CrossRefGoogle Scholar
  34. Linton OB, Nielsen JP (1995) A kernel method of estimating structured nonparametric regression based on marginal integration. Biometrika 82:93–101CrossRefGoogle Scholar
  35. Mammen E, Linton OB, Nielsen JP (1999) The existence and asymptotic properties of a backfitting projection algorithm under weak conditions. Ann Stat 27:1443–1490Google Scholar
  36. Mammen E, Park B (2005) Bandwidth selection for smooth backfitting in additive models. Ann Stat 33:1260–1294CrossRefGoogle Scholar
  37. Neumann MH, Polzehl J (1998) Simultaneous bootstrap confidence bands in nonparametric regression. J Nonparametr Stat 9:307–333CrossRefGoogle Scholar
  38. Neumeyer N, Sperlich S (2006) Comparison of separable components in different samples. Scand J Stat 33:477–501CrossRefGoogle Scholar
  39. Nielsen JP, Sperlich S (2005) Smooth backfitting in practice. J R Statl Soc B 67:43–61CrossRefGoogle Scholar
  40. Politis DN, Romano JP, Wolf M (1999) Subsampling. Springer series in statistics. Springer, Punta GordaGoogle Scholar
  41. Roca-Pardiñas J, Sperlich S (2007) Testing the link when the index is semiparamtric: a comparison study. Comput Stat Data Anal 12:6565–6581CrossRefGoogle Scholar
  42. Rodriguez-Póo JM, Sperlich S, Vieu P (2012) And adaptive specification test for semiparametric models. Economet Theory 29:483–523Google Scholar
  43. Rosenblatt M (1969) Conditional probability density and regression estimators. Multivar Anal II:25–31Google Scholar
  44. Severance-Lossin E, Sperlich S (1999) Estimation of derivatives for additive separable models. Statistics 33:241–265CrossRefGoogle Scholar
  45. Sperlich S, Linton OB, Härdle W (1999) Integration and backfitting methods in additive models: finite sample properties and comparison. Test 8:419–458CrossRefGoogle Scholar
  46. Spokoiny V (1998) Adaptive and spatially adaptive testing of a nonparametric hypothesis. Math Methods Stat 7:245–273Google Scholar
  47. Su L, White H (2010) Testing structural change in partially linear models. Econometr Theory 26:1761–1806CrossRefGoogle Scholar
  48. Su L, Ullah A (2013) A nonparametric goodness-of-test-based test for conditional heteroskedasticity. Econometric Theory 29:187–212Google Scholar
  49. Su L, Tu Y, Ullah A (2013) Testing additive separability of error term in nonparametric structural models. Econometr Rev (forthcoming)Google Scholar
  50. Su L, Murtazasvilli I, Ullah A (2013) Local linear GMM estimation of functional coefficient IV models with an application to estimating the rate of return to schooling. J Bus Econ Stat 31:184–207Google Scholar
  51. Vieu P (1993) Bandwidth selection for kernel regression: a survey. In: Härdle W, Simar L (ed) Computer intensive methods in statistics, statistics and computing 1, Physica, Berlin, pp 13–149Google Scholar
  52. Wood SN (2008) Fast stable direct fitting and smoothness selection for generalized additive models. J R Stat Soc B 70:495–518CrossRefGoogle Scholar
  53. Zhang C (2003) Calibrating the degrees of freedom for automatic data smoothing and affective curve checking. J Am Stat Assoc 98:609–629CrossRefGoogle Scholar
  54. Zhang C (2004) Assessing the equivalence of nonparametric regression tests based on spline and local polynomial smoothers. J Stat Plan Inference 126:73–95CrossRefGoogle Scholar
  55. Zheng X (1996) A consistent test of a functional form via nonparametric estimation techniques. Journal of Econometrics 75:263–289CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Département des sciences économiques and Research Center for StatisticsUniversité de GenèveGenevaSwitzerland

Personalised recommendations