Empirical Economics

, Volume 45, Issue 3, pp 1049–1071 | Cite as

A smooth coefficient model of carbon emissions



I use a semiparametric smooth coefficient model to estimate a generalization of the emissions convergence models derived from the green Solow model proposed by Brock and Taylor (J Econ Growth 15:127–153, 2010). Parametric estimates of simple homogeneous coefficient convergence models suggest that there may be heterogeneity in emissions convergence across different subsamples of observations. The semiparametric models confirm that there is heterogeneity across countries in coefficient estimates; however, such heterogeneity does not appear to be substantial enough to qualitatively influence the estimates derived from the parametric models. Hence, I find that (i) the green Solow model is a robust framework for analyzing carbon emissions convergence and (ii) carbon emissions are converging across a large sample of countries. My results suggest that international agreements that assign pollution rights based on population levels may be agreeable to many nations.


Smooth coefficients Semiparametric estimation Carbon convergence Climate policy 


  1. Aldy JE (2006) Per capita carbon dioxide emissions? Convergence or divergence? Environ Res Econ 33:533–555CrossRefGoogle Scholar
  2. Barassi MR, Cole MA, Elliott RJR (2008) Stochastic divergence or convergence of per capita carbon dioxide emissions: re-examining the evidence. Environ Res Econ 40:121–137CrossRefGoogle Scholar
  3. Bliss C (1999) Galton’s fallacy and economic convergence. Oxf Econ Pap 51:4–14CrossRefGoogle Scholar
  4. Brock WA, Taylor MS (2010) The green Solow model. J Econ Growth 15:127–153CrossRefGoogle Scholar
  5. Durlauf SN, Kourtellos A, Minkin A (2001) The local Solow growth model. Eur Econ Rev 45:928–940CrossRefGoogle Scholar
  6. Friedman M (1992) Do old fallacies ever die? J Econ Lit 30:2129–2132Google Scholar
  7. Hartarska V, Parmeter CF, Nadolynak D (2011) Economies of scope of lending and mobilizing deposits in microfinance institutions: a semiparametric analysis. Am J Agric Econ 93:389–398Google Scholar
  8. Henderson DJ, Kumbhakar SC, Parmeter CF (2012) A simple method to visualize results in nonlinear regression models. Econ Lett 117:578–581Google Scholar
  9. Heston A, Summers R, Aten B (2009) Penn World Table Version 6.3, Center for International Comparisions of Production, Income and Prices at the University of PennsylvaniaGoogle Scholar
  10. Hurvich CM, Simonoff JS, Tsai CL (1998) Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. J R Stat Soc Ser B 60:271–293CrossRefGoogle Scholar
  11. Li Q, Racine JS (2004) Cross-validated local linear nonparametric regression. Stat Sin 14:485–512Google Scholar
  12. Li Q, Racine JS (2010) Smooth varying coefficient estimation and inference for qualitative and quantitative data. Econom Theory 26:1607–1637CrossRefGoogle Scholar
  13. Li Q, Huang CJ, Li D, Fu T (2002) Semiparametric smooth coefficient models. J Bus Econ Stat 20:412–422CrossRefGoogle Scholar
  14. Li Q, Ouyang D, Racine JS (2011) Categorical semiparametric varying coefficient models. J Appl Econom. doi: 10.1002/Jae.1261
  15. Lucas RE (1976) Econometric policy evaluation: a critique. In: Brunner K, Meltzer AH (eds) The Phillips curve and labor markets. Carnegie-Rochester conference on public policy. North Holland, AmsterdamGoogle Scholar
  16. Mamuneas TP, Savvides A, Stengos T (2006) Economic development and the return to human capital: a smooth coefficient semiparametric approach. J Appl Econom 21:111–132CrossRefGoogle Scholar
  17. Mankiw NG, Romer D, Weil DN (1992) A contribution to the empirics of economic growth. Q J Econ 107:407–437CrossRefGoogle Scholar
  18. McKibbin W, Stegman A (2005) Convergence and per capita carbon emissions. Working paperGoogle Scholar
  19. Meyer A (2006) The fair choice for climate change. BBC News. http://news.bbc.co.uk/2/hi/science/nature/4994296.stm. Accessed 11 June 2012
  20. Panopoulou E, Pantelidis T (2009) Club convergence in carbon dioxide emissions. Environ Res Econ 44:47–70CrossRefGoogle Scholar
  21. Quah D (1993) Galton’s fallacy and tests of the convergence hypothesis. Scand J Econ 95:427–443CrossRefGoogle Scholar
  22. Racine J, Li Q (2004) Nonparametric estimation of regression functions with both categorical and continuous data. J Econom 119:99–130CrossRefGoogle Scholar
  23. Simonoff JS, Tsai CL (1999) Semiparametric and additive model selection using an improved Akaike information criterion. J Comput Graph Stat 8:22–40Google Scholar
  24. Strazicich MC, List JA (2003) Are \(\text{ CO}_2\) emissions levels converging among industrial countries? Environ Res Econ 24:263–271CrossRefGoogle Scholar
  25. Stegman A (2005) Convergence in carbon emissions per capita. Working paperGoogle Scholar
  26. Van PN (2005) Distribution dynamics of \(\text{ CO}_2\) emissions. Environ Res Econ 32:495–508CrossRefGoogle Scholar
  27. Westerlund J, Basher SA (2008) Testing for convergence in carbon dioxide emissions using a century of panel data. Environ Res Econ 40:109–120CrossRefGoogle Scholar
  28. Zhang R, Sun K, Delgado MS, Kumbhakar SC (2012) Productivity in China’s high technology industry: regional heterogeneity and R&D. Technol Forecast Soc Change 79:127–141CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Agricultural EconomicsPurdue UniversityWest LafayetteUSA

Personalised recommendations