Empirical Economics

, Volume 43, Issue 3, pp 1353–1372

Comparison of SML and GMM estimators for the random coefficient logit model using aggregate data

Article

Abstract

A simulated maximum likelihood (SML) estimator for the random coefficient logit model using aggregate data is found to be more efficient than the widely used generalized method of moments estimator (GMM) of Berry et al. (Econometrica 63:841–890, 1995). In particular, the SML estimator is better than the GMM estimator in recovery of heterogeneity parameters which are often of central interest in marketing research. With the GMM estimator, the analyst must determine what moment conditions to use for parameter identification, especially the heterogeneity parameters. With the SML estimator, the moment conditions are automatically determined as the gradients of the log-likelihood function, and these are the most efficient ones if the model is correctly specified. Another limitation of the GMM estimator is that the product market shares must be strictly positive while the SML estimator can handle zero market share observations. Properties of the SML and GMM estimators are demonstrated in simulated data and in data from the US photographic film market.

Keywords

Random coefficients Logit model Endogeneity Heterogeneity Simulated maximum likelihood Generalized method of moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerberg D, Benkard CL, Berry S, Pakes A (2007) Econometric tools for analyzing market outcomes. In: Heckman JJ, Leamer EE Handbook of econometrics vol 6, part 1. North Holland, AmsterdamGoogle Scholar
  2. Albuquerque P, Bronnenberg BJ (2009) Estimating demand heterogeneity using aggregated data: an application to the frozen pizza category. Mark Sci 28(2): 356–372CrossRefGoogle Scholar
  3. Berry S (1994) Estimating discrete-choice models of product differentiation. RAND J Econ 25: 242–262CrossRefGoogle Scholar
  4. Berry S, Levinsohn J, Pakes A (1995) Automobile prices in market equilibrium. Econometrica 63: 841–890CrossRefGoogle Scholar
  5. Berry S, Linton OB, Pakes A (2004) Limit theorems for estimating the parameters of differentiated product demand systems. Rev Econ Stud 71(248): 613–654Google Scholar
  6. Besanko D, Dube JP, Gupta S (2003) Competitive price discrimination strategies in a vertical channel using aggregate data. Manag Sci 49(9): 1121–1138CrossRefGoogle Scholar
  7. Bodapati A, Gupta S (2004) The recoverability of segmentation structure from store-level aggregate data. J Mark Res 41: 351–364CrossRefGoogle Scholar
  8. Chintagunta PK, Dubé J-P, Goh KY (2005) Beyond the endogeneity bias: the effect of unmeasured brand characteristics on household-level brand choice models. Manag Sci 51(5): 832–849CrossRefGoogle Scholar
  9. Giacomo M (2008) GMM estimation of a structural demand model for yogurt and the effects of the introduction of new brands. Empir Econ 34: 537–565CrossRefGoogle Scholar
  10. Hausman J (1978) Specification tests in econometrics. Econometrica 46: 1251–1272CrossRefGoogle Scholar
  11. Hausman J (1983) Specification and estimation of simultaneous equation models. In: Griliches Z, Intriligator M (eds) Handbook of econometrics, vol 1. North Holland, AmsterdamGoogle Scholar
  12. Heckman J (1978) Dummy endogenous variables in a simultaneous equation system. Econometrica 46: 931–959CrossRefGoogle Scholar
  13. Ho K (2006) The welfare effects of restricted hospital choice in the US medical care market. J Appl Econom 21(7): 1039–1079CrossRefGoogle Scholar
  14. Keane MP (1993) Simulation estimation for panel data models with limited dependent variables. In: Rao CR, Maddala GS, Vinod D (eds) The handbook of statistics & econometrics. Elsevier Science Publishers, Amsterdam, pp 545–572Google Scholar
  15. Kitamura Y, Stutzer M (1997) An information-theoretic alternative to generalized method of moments estimation. Econometrica 65(4): 861–874CrossRefGoogle Scholar
  16. Kuksov D, Villas-Boas JM (2008) Endogeneity and individual consumer choice. J Mark Res 45(December): 702–714CrossRefGoogle Scholar
  17. Musalem A, Bradlow ET, Raju JS (2009) Bayesian estimation of random-coefficients choice models using aggregate data. J Appl Econom 24(3): 490–516CrossRefGoogle Scholar
  18. Nevo A (2000) A practitioner’s guide to estimation of random coefficients logit models of demand. J Econ Manag Strategy 9(4): 513–548CrossRefGoogle Scholar
  19. Park S, Gupta S (2009) Simulated maximum likelihood estimator for the random coefficient logit model using aggregate data. J Mark Res 46(August): 531–542CrossRefGoogle Scholar
  20. Petrin A (2002) Quantifying the benefits of new products: the case of the minivan. J Polit Econ 110: 705–729CrossRefGoogle Scholar
  21. Petrin A, Train K (2004) Omitted product attributes in discrete choice models. Working paper, University of Chicago, Chicago, ILGoogle Scholar
  22. Sudhir K (2001) Competitive pricing behavior in the US auto market: a structural analysis. Mark Sci 20(1): 42–60CrossRefGoogle Scholar
  23. Sudhir K, Chintagunta PK, Kadiyali V (2005) Time varying competition. Mark Sci 24(1): 96–109CrossRefGoogle Scholar
  24. Train K (2003) Discrete choice methods with simulation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Tsagkanos AG (2007) A bootstrap-based minimum bias maximum simulated likelihood estimator of mixed logit. Econ Lett 96(2): 282–286CrossRefGoogle Scholar
  26. Wooldridge JM (2001) Econometric analysis of cross section and panel data. MIT Press, CambridgeGoogle Scholar
  27. Wu D (1973) Alternative tests of independence between stochastic regressors and disturbances. Econometrica 41: 733–750CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.W.P. Carey School of Business at Arizona State UniversityTempeUSA
  2. 2.Johnson Graduate School of ManagementCornell University, Sage HallIthacaUSA

Personalised recommendations